设A=的一个特征值为λ1=2,其对应的特征向量为ξ1= (1)求常数a,b,c; (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.

admin2017-09-15  50

问题 设A=的一个特征值为λ1=2,其对应的特征向量为ξ1
    (1)求常数a,b,c;
    (2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.

选项

答案(1)由Aξ1=2ξ1, [*] (2)由|λE-A=[*]=0,得λ1=λ2=2,λ3=-1. 由(2E-A)X=0,得 [*] 由(-E-A)X=0,得α3=[*] 显然A可对角化,令P=[*] 则P-1AP=[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/0Bk4777K
0

随机试题
最新回复(0)