首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
admin
2016-01-22
36
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
选项
答案
将欲证结论中的ξ换成x得(2x+1)f(x)+xf’(x)=0,即 [*] 上式两端求不定积分得ln|f(x)|=一2x一ln|x|+ln|c|,即c=xe
2x
f(x),故可构造辅助函数F(x)=ze
2x
f(x),则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0,F(1)=e
2
f(1)=0, 所以F(x)在闭区间[0,1]上满足罗尔定理的条件,从而至少存在一点ξ∈(0,1),使得F’(ξ)=0, 故(2ξ+1)f(ξ)+ξ
解析
转载请注明原文地址:https://kaotiyun.com/show/0Dw4777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=0.(1)求正交矩阵Q,使得在正交变换x-Qy下二次型化为标准形;(2)求矩阵A.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,求方程组AX=b的通解.
设A,B为三阶矩阵,且A~B,λ1=1,λ2=2为A的两个特征值,|B|=2,求.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在。写出f(x)的带拉格朗日余项的麦克劳林公式。
设f(x)为连续函数,计算,其中D是由y=x3,y=1,x=-1围成的区域。
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ’(u)≠1,求.
设x-(a+bcosx)sinx为x的5阶无穷小,则a=________,b=________.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
随机试题
若某城市自来水输送管道被该市传染病医院的卫生间排出的污水污染,则有可能导致以下哪项病毒性肝炎的暴发或流行
A.感受器的编码作用B.感受器的适应现象C.感受器适宜刺激D.感受器的换能作用E.感受器电
A.商品名B.通用名C.化学名D.别名E.药品代码可以进行注册和申请专利保护的药品名称是
衡量一个基金经营好坏的主要指标是()
用人单位招用劳动者,不得扣押劳动者的居民身份证和其他证件,不得要求劳动者提供担保或者以其他名义向劳动者收取财物。()
物流企业的营业税金及附加不包括()。
启发学生的积极思维通常采用的方法是()。
Atthelastmoment,thebasketballplayermadeaclevermaneuverthatallowedhimtoscore.
TheInternethasopenedupawholenewon-lineworldforustomeet,chatandgowherewe’veneverbeenbefore.Butjustasinf
A、Becausepeoplearepassivelisteners.B、Becausepeopleareunwillingtotalk.C、Becausepeopleenjoyansweringanyquestion.D
最新回复
(
0
)