首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
admin
2018-11-23
68
问题
给定向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+b)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
选项
答案
根据题意得: r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,因此(Ⅰ)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(Ⅰ)与(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/12M4777K
0
考研数学一
相关试题推荐
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,a=_____.
设已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P-1AP为对角形矩阵.
设随机变量,i=1,2;且P(X1X2=0}=1.则P{X1=X2)等于
讨论三个平面:x+2y+z=1,2x+3y+(a+2)z=3,x+ay一2z=0的相互位置关系.
已知随机变量X与Y独立,且X服从[2,4]上的均匀分布,Y~N(2,16).求cov(2X+XY,(Y-1)2).
设总体X在区间(μ一ρ,μ+ρ)上服从均匀分布,从X中抽得简单样本X1,…,Xn,求μ和ρ(均为未知参数)的矩估计,并问它们是否有一致性.
设α1=(1+a,1,1,1),α2=(2,2+a,2,2),a3=(3,3,3+a,3),a4=(4,4,4,4+a).问a为什么数时α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求出一个最大线性无关组.
随机试题
()树脂属于热塑性树脂。
遗精频作,甚至滑精已经2年,伴有头昏目眩,耳鸣腰酸,脉细弱,尺脉尤甚等症,多属于
党和国家到2020年的奋斗目标是()。
消除或减少焊接残余变形和残余应力的施工措施主要有()。
建设项目法人可以是()。
根据票据法律制度的规定,下列各项中,属于汇票到期日前持票人可以行使票据追索权的情形有()。
千古传诵名句“野旷天低树,江清月近人”,出自()的诗句。
A、 B、 C、 D、 A第一组图形中,第一个图形内部部分不动,外部图形旋转得到第二个图形,第二个图形内部旋转,外部图形不动得到第三个图形,第二组图形遵循此种规律。故选A。
网络中立是指在法律允许范围内,所有互联网用户都可以按自己的选择访问网络内容、运行应用程序、接入设备、选择服务提供商。这一原则要求网络运营商平等对待所有互联网内容和访问,防止其从商业利益出发控制传输数据的优先级,保证网络数据传输的“中立性”。根据上述定义,下
ASouthKoreancitydesignedforthefuturetakesonalifeofitsownA)Gettingaroundacityisonething—andthenthere’s
最新回复
(
0
)