首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x1,x2,x3)=x12+2x22+6x32-2x1x2+2x1x3-6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵; (Ⅱ)设A=,求可逆矩阵D,使A=DTD.
(Ⅰ)设f(x1,x2,x3)=x12+2x22+6x32-2x1x2+2x1x3-6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵; (Ⅱ)设A=,求可逆矩阵D,使A=DTD.
admin
2020-01-15
94
问题
(Ⅰ)设f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+6x
3
2
-2x
1
x
2
+2x
1
x
3
-6x
2
x
3
,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;
(Ⅱ)设A=
,求可逆矩阵D,使A=D
T
D.
选项
答案
(Ⅰ)将f(x
1
,x
2
,x
3
)用配方法化为标准形,得 f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+6x
3
2
-2x
1
x
2
+2x
1
x
3
-6x
2
x
3
=(x
1
-x
2
+x
3
)
2
+x
2
2
+5x
3
2
-4x
2
x
3
=(x
1
-x
2
+x
3
)
2
+(x
2
-2x
3
)
2
+x
3
2
. [*] 得f的标准形为 f(x
1
,x
2
,x
3
)=y
1
2
+y
2
3
+y
3
2
;. 所作的可逆线性变换为x=Cy,其中C=[*]. 二次型的规范形为y
1
2
+y
2
2
+y
3
2
,正惯性指数p=3=r(A),故知对应矩阵A是正定矩阵(也可用定义证明,或用顺序主子式全部大于零证明). (Ⅱ)法一 由题设知,A=[*] 是f(x
1
,x
2
,x
3
)的对应矩阵,即f(x
1
,x
2
,x
3
)=x
T
AX. 令x=Cy,其中C=[*],得f=x
T
AX=y
T
C
T
Cy=y
T
Ey,故C
T
AC=E,A=(C
-1
)
T
C
-1
=D
T
D,其中D=C
-1
. [*] 法二 由(Ⅰ)知,f(x
1
,x
2
,x
3
)=(x
1
-x
2
+x
3
)
2
+(x
2
-2x
3
)
2
+x
3
2
; =(x
1
-x
2
+x
3
,x
2
-2x
3
,x
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1JS4777K
0
考研数学一
相关试题推荐
设a取什么值时,A可以相似对角化.
设求A的特征值.
设A是n阶可逆矩阵,B是把A的第2列的3倍加到第4列上得到的矩阵,则
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α.求xTAx的表达式.
设正项级数是它的部分和.证明级数绝对收敛.
设是取自同一正态总体N(μ,σ2)的两个相互独立且容量相同的简单随机样本的两个样本均值,则满足的最小样本容量n=[img][/img]
设(X1,X2,X3)为来自总体X的简单随机样本,则下列不是统计量的是().
设积分区域D:x2+y2≤R2,其中Y≥0,则().其中D1是积分区域D在x≥0的部分区域.
交换积分次序:=___________
设∑是球面x2+y2+z2=1的外侧在x≥0,y≥0,z≥0的部分,则曲面积分xyzdxdy=()
随机试题
胆胃不和,痰热内扰,症见虚烦不眠,惊悸不宁者,治宜选用()(1995年第52题)
MsgBox函数使用的正确语法是()。
A、HCO3-↓,pH↑,PaCO2↓B、HCO3-正常,pH↓,PaCO2↓C、HCO3-正常或↑,pH↓,PaCO2↓D、HC3-↑,pH↑,PaCO2正常或↑E、HCO3-↓,pH↓,PaCO2正常或↓代谢性碱中毒
在法人治理结构中,()是监督机构,向股东会负责,对董事会和经营管理层的决策和经营管理活动进行监督。
甲公司系增值税一般纳税人,销售商品适用增值税税率为17%,发生的有关债务重组经济业务如下:(1)2×17年1月1日与丙银行协商并达成协议,将丙银行于2×16年1月1日贷给甲公司的3年期,年利率为9%,本金为500万元的贷款进行债务重组,丙银行未对该项贷款
皮亚杰认为,儿童在判断行为对错时,是()。
Whichflightwillthemantake?
WhydoesMrs.Smithfeelsad?
HowtoReducePresentationStress1.Causesofpresentationstress■Fearofbeing【T1】______【T1】______■D
【R1】______Ifthesettingisscenic,itsclaimstofameareslender:athrivingumbrellaindustryandareputationasthecoldest
最新回复
(
0
)