首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
admin
2016-05-09
66
问题
求线性方程组
的通解,并求满足条件χ
1
2
=χ
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令χ
3
=0,χ
4
=0得χ
2
=1,χ
1
=2,即α=(2,1,0,0)
T
. 导出组的解: 令χ
3
=1,χ
4
=0得χ
2
=3,χ
1
=1,即η
1
=(1,3,1,0)
T
; 令χ
3
=0,χ
4
=1得χ
2
=0,χ
1
=-1,即η
2
=(-1,3,1,0)
T
. 因此方程组的通解是:(2,1,0,0)
T
+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
如果要求通解满足χ
1
2
=χ
2
2
,则有(2+k
1
-k
2
)
2
=(1+3k
1
)
2
,那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
),即k
2
=1-2k
1
或k
2
=3+4
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
或(-1,1,0,3)
T
+k(-3,3,1,4)
T
(k为任意常数)是满足χ
1
2
=χ
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Mw4777K
0
考研数学一
相关试题推荐
设f(x)有连续导数,f(x)>0,且对任意x,h,满足f(x+h)=∫xx+hdt+f(x),f(1)=求y=f(x)与两个坐标轴及x=1所围图形绕y轴旋转一周所得旋转体的体积
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是__________,a=__________.
设fn(x)=Cn1cosx-Cn2cos2x+…+(-1)n-1Cnncos2x,证明:对任意自然数n,方程fn(x)=1/2在区间(0,π/2)内有且仅有一个根.
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知函数u(x,y)满足,求a,b的值,使得在变换u(x,y)=v(x,y)eax+by之下,上述等式可化为函数v(x,y)的不含一阶偏导数的等式.
观察知道,此题为“0/0”型.但不能用洛必达法则求解.应该以去掉分子中的模符号“||”为化简方向.
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
随机试题
治疗急、慢性骨及关节感染宜选用
患者,男性,45岁。肝硬化5年。放腹水后出现神志恍惚、答非所问。行为反常等肝性脑病表现,提示其处于哪一期肝性脑病()。
漏出液的特点是
瘢痕性幽门梗阻,可造成电解质紊乱的类型是()。
根据《建筑法》,在建工程因故中止施工的,建设单位应当自中止施工之日起()内,向施工许可证颁发机关报告,并按照规定做好建筑工程的维护管理工作。
农村土地调查过程中,国土资源管理部门应收集的地类调查资料有()。
汇票持有者某甲,在汇票到期日前,出现()情形,可以行使追索权。
以下()情形最可能形成外在压力,进而导致对职业道德基本原则的不利影响。
设函数f(x)在(一∞,+∞)内连续,其导函数y=f’(x)的曲线如图所示,则f(x)有
Youcan______yourpricessoastocoveruswithacertainpercentage.
最新回复
(
0
)