首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
admin
2016-05-09
41
问题
求线性方程组
的通解,并求满足条件χ
1
2
=χ
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令χ
3
=0,χ
4
=0得χ
2
=1,χ
1
=2,即α=(2,1,0,0)
T
. 导出组的解: 令χ
3
=1,χ
4
=0得χ
2
=3,χ
1
=1,即η
1
=(1,3,1,0)
T
; 令χ
3
=0,χ
4
=1得χ
2
=0,χ
1
=-1,即η
2
=(-1,3,1,0)
T
. 因此方程组的通解是:(2,1,0,0)
T
+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
如果要求通解满足χ
1
2
=χ
2
2
,则有(2+k
1
-k
2
)
2
=(1+3k
1
)
2
,那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
),即k
2
=1-2k
1
或k
2
=3+4
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
或(-1,1,0,3)
T
+k(-3,3,1,4)
T
(k为任意常数)是满足χ
1
2
=χ
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Mw4777K
0
考研数学一
相关试题推荐
2
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:方程f(x)=∫01f(x)dx在(0,1)内至少有一个实根;
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a)(a>0),证明:存在ξ∈(-a,a),使得f’(ξ)=2ξf(ξ).
求由球面x2+y2+z2=1,x2+y2+z2=4z及锥面z=的上半部分所围的均质物体对位于坐标原点处的质量为m的质点的引力,设其密度μ为常数.
设函数y=y(x)由参数方程确定,则|t=0=________.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得_________.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)