首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
admin
2018-06-27
35
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=A.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
,c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解:得 [*] 由Q
-1
AQ=[*] 得 A=Q[*]Q
-1
. 于是 A-(3/2)E=[*]Q
-1
. [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Zk4777K
0
考研数学二
相关试题推荐
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx为标准形,并写出所用正交变换;
已知当x→0时f(x)=tanx一ln(1+sinx)与kxn是等价无穷小量,则
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设f(t)为连续函数,且则=__________.
(I)求在区间[0,+∞)上的最大值;(Ⅱ)证明当0≤x
设f(x)在区间[-1,1]上存在二阶连续导数,f(0)=0,设求
设D为曲线y=x3与直线y=x所围成的两块区域,计算
“对任意给定的ε∈(0,1),总存在正整数N,当,n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)gf(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
某批产品中有口件正品,6件次品.(1)用放回抽样方式从中抽取n(n≤a+b)件产品,问其中恰有k(k≤n)件次品的概率p1;(2)用不放回抽样方式从中抽取n件产品,问其中恰有k(k≤n)件次品的概率p2;(3)依次将产品一件件取出,求第k次取出正品的概率p
随机试题
输卵管复通术的术前准备不正确的是
乳腺摄影主要利用X线的
腹泻脱水患儿,如输液后出现乏力,腹胀,肠鸣音减弱,腱反射消失,心音低钝,应考虑()
房层建筑工程质量验收的依据有()。
我国现存完好的古代城池建筑有()
红糖的褐色来自()反应和酶促褐变所产生的类黑素。
下面是某求助者的WAIS—RC的测验结果:关于儿童行为量表,正确的说法包括()。
晨练是一种好习惯,但未必人人适合。从人的生理特点来看,早上6点钟左右,人体的血压开始升高,心率逐渐加快,上午10点左右达到峰值。如果有冠心病、高血压的人此时锻炼,尤其是进行剧烈运动就有可能发生意外。清晨6点到8点,人体血小板的凝聚力明显增强,血液相对黏稠,
Ifyouhavehighbloodpressure,you’reingood【C1】______.Hypertensionaffects67millionAmericans,includingnearlytwo-third
在数据库设计中,将E-R图转换成关系数据模型的过程属于
最新回复
(
0
)