首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
admin
2019-08-12
68
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’
+
(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
选项
答案
因为[*]=f’
-
(a)>0,所以存在δ>0,当0<x-a<δ时,有[*]>0,从而f(x)>f(a),于是存在c∈(a,6),使得f(c)>f(a)=0.由微分中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 [*] 再由微分中值定理及f(x)的二阶可导性,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1pN4777K
0
考研数学二
相关试题推荐
若函数f(x)在(0,+∞)上有定义,在x=1处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R),证明:f(x1)f(x2)≥
求方程的通解以及满足y(0)=2的特解.
设y1=xex+2e2x,y2=xex+3e-x,y3=xex—e2x一e-x为某二阶常系数线性非齐次方程的3个特解,设该方程的y"前的系数为1,则该方程为_________.
设函数f(x)在[(a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;
设zf(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续二阶偏导数,求
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
设f(x)可导f(x)=0,f’(0)=2,,则当x→0时,F(x)是g(x)的()
设函数y=f(x)在点x=x。处可微,△y=f(x。+△x)-f(x。),则当△x→0时,必有[].
随机试题
关于输血的知识,下列说法中不正确的是()。
采用多道程序设计技术可以()
左旋多巴与下列哪些药物合用,治疗帕金森病产生协同作用:
设计技术指标的先进性实用性、新技术装备的采用、设计工作质量和设计服务质量是()评价。
上市公司董事会就该重大事件形成决议时,应当及时履行重大事件的信息披露义务。这里所说的及时是指()。
目前国际结算的主要方式有()。
()是劳动法对劳动关系进行的第一次调整。(2007年5月三级真题)
1946年,决定将抗战以来实行的减租减息政策改变为消灭封建土地制度,实行耕者有其田的土地政策的文件或者法律是()。
中央军事委员会的领导体制是()
线性表的链式存储结构与顺序存储结构相比,链式存储结构的优点有
最新回复
(
0
)