首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
admin
2020-04-30
30
问题
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η
1
,η
2
,η
3
满足η
1
+η
2
=
(2,0,-2,4)
T
,η
1
+η
3
=(3,1,0,5)
T
,则Ax=b的通解为_________________.
选项
答案
k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
解析
本题考查线性方程组的解的性质和非齐次线性方程组的通解的结构.
因为r(A)=3,所对应的齐次线性方程组Ax=0的解空间的维数为4-3=1,故它的任一非零解都可作为其基础解系.由于η
1
+η
3
-(η
1
+η
2
)=η
3
-η
2
=(1,1,2,1)
T
可作为Ax=0的基础解系.
又
是Ax=b的—个解,所以Ax=b的通解为k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
转载请注明原文地址:https://kaotiyun.com/show/2Bv4777K
0
考研数学一
相关试题推荐
向量组α1,α2,…,αs线性无关的充要条件是().
4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=()
设多项式f(x)=,则x4的系数和常数项分别为()
设a,b为非零向量,且满足(a+3b)⊥(7a一5b),(a一4b)⊥(7a一2b),则a与b的夹角θ=()
设列向量组α1,α2,α3线性无关,则向量组α1+α2,α2+α3,α1+α3线性_________.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
向量β=(1,-2,4)T在基α1=(1,2,4)T,α2=(1,-1,1)T,α3=(1,3,9)T的坐标是_______.
随机试题
急性肾小球肾炎中医辨证分型除风水相搏外尚有
甲公司在一次省政府所举行的管道燃气供应的招标活动中中标,但参加投标活动的乙公司对此次招标活动不满,欲向省政府就此次招标活动申请听证。下列各选项中正确的是:
不论是由建设工程参与方的哪一方提出的设计变更,作出变更决定后都应由( )签发《工程变更单》,指示承包单位按变更的决定组织方可施工。
某新校区抗震模拟实验室工程,主体部分采用钢架结构,施工合同约定钢材由业主供料,其余材料均委托承包商采购。但承包商在以自有机械设备进行主体钢结构制作吊装过程中,由于业主供应钢材不及时导致承包商停工7天,则承包商计算施工机械窝工费时,应按()向业主提出
()是指由财政部发行的,有固定面值及票面利率,通过纸质媒介记录债权债务的国债。
学生的权利有哪些?
课程目标的基本特征有哪些?
某日,甲市振兴区某职业中学学生(14周岁)、吴某(15周岁)、郑某(女、14周岁)、汪某(16周岁)因网络赌博输钱,囊中羞涩,于是商量要弄点钱。见路人杜某随身携带挎包走来,决定抢包。吴某和郑某把风,汪某和周某上前拽走杜某挎包后欲逃跑,被杜某拽住。随即四人对
对违法犯罪分子的改造工作,是()的特殊预防工作。
某投资者在3个月后将获得一笔资金,并希望用该笔资金进行股票投资。但是,该投资者担心股市整体上涨从而影响其投资成本,在这种情况下,可采取()策略。
最新回复
(
0
)