首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
admin
2019-07-22
98
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0,即 (c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n[r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0.与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/2QN4777K
0
考研数学二
相关试题推荐
求f(χ)=的间断点并分类.
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫abf(χ)dχ=2∫Tbf(χ)dχ+∫a2T-bf(χ)dχ.
设m,n均是正整数,则反常积分的收敛性()
求下列导数:(1)设y=y(χ)由确定,求(2)设y=y(χ)由确定,求
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设,求a,b的值.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕z轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(x);(2)f(x)的极值.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
随机试题
男,75岁,查体血清PSA14.6ng/ml,MRI提示前列腺右边缘叶直径约0.3cm低回声,前列腺包膜完整。前列腺穿刺活检提示:穿刺6针,1针阳性,前列腺腺癌,该患者应采取的治疗措施为
A.HLA抗原B.甲状腺刺激性抗体(TSAb)C.独特型与抗独特型抗体D.7一干扰素E.葡萄糖激酶基因与Graves病无关的是
与体层面影像混淆的非层面的模糊投影总称为
该工程签约时的合同价款是多少万元?该工程的预付款是多少万元?
现行的《金融机构反洗钱规定》由中国人民银行制定并自()年1月1日起施行,原2003年1月3日颁布的《金融机构反洗钱规定》同时废止。
根据《保险法》的规定,保险人对保险合同中的免责条款未作提示或未明确说明的,该免责条款()。
我国旅游主管部门对导游实行的是()。
下列关于人口要素说法错误的是()。
Imaginebeingaskedtospendtwelveorsoyearsofyourlifeinasocietywhichconsistedonlyofmembersofyourownsex.Howw
基于如下两个关系:学生和专业学生(学号,姓名,专业号,年龄)
最新回复
(
0
)