首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fZ(z)= ( )
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fZ(z)= ( )
admin
2019-02-23
62
问题
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度f
Z
(z)= ( )
选项
A、∫
-∞
+∞
f(x,z-x)dx
B、∫
-∞
+∞
f(x,x-z)dx
C、∫
-∞
+∞
f(x,z+x)dx
D、∫
-∞
+∞
f(-x,z+x)dx
答案
C
解析
记Z的分布函数为F
Z
(z),则
F
Z
(z)=P{Z≤z}=P(Y-X≤z}=
=∫
-∞
+∞
dx∫
-∞
+∞
f(x,y)dy, ①
其中D
z
={(x,y)|y-x≤z),如图3—4所示的阴影部分.
又
∫
-∞
+∞
f(x,y)dy
∫
-∞
z
(x,u+x)du. ②
将②代入①得
F
Z
(z)=∫
-∞
+∞
dx∫
-∞
z
f(x,u+x)du=∫
-∞
z
du∫
-∞
+∞
f(x,u+x)dx.
于是f
Z
(z)=
=∫
-∞
+∞
f(x,z+x)dx.因此本题选C.
转载请注明原文地址:https://kaotiyun.com/show/2n04777K
0
考研数学一
相关试题推荐
设f(x)具有二阶导数,且f’’(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
计算I=(x+y)2dxdy,其中D:|x|+|y|≤1.
设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX-bY,其中a,b为不相等的常数.求:(1)E(U),E(V),D(U),D(V),ρuv;(2)设U,V不相关,求常数a,b之间的关系.
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3,设随机变量U=max{X,Y},V=min{X,Y}.求P(U=V).
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3,设随机变量U=max{X,Y},V=min{X,Y}.求Z=UV的分布;
设求①a,b取什么值时存在矩阵X,满足AX一XA=B?②求满足AX一XA=B的矩阵X的一般形式.
设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组Ax=0的通解为c(1,一2,1,0)t,c任意.则下列选项中不对的是
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX—bY),下列结论正确的是().
随机试题
各国秘书为其领导工作服务,开展办文、办会、办事等日常工作业务的前提是
Theboat______,throwingtheboysintothewater.
陈旧性脱位是指:
A、T细胞表面B、B细胞表面C、NK细胞表面D、肥大细胞表面E、造血干细胞表面CD34分子表达在
先天禀赋不足是引起消渴病的重要内在因素,其中尤以阳虚体质最易罹患。()
特种设备的安装单位应具备的条件是()。
依据企业所得税相关规定,下列对所得来源地的确定,正确的有()。(2013年)
某个体零售户于2011年2月1日购入某品牌冰箱10台,含税进价为23.4万元。当月将其中6台销售给某三星级宾馆,货款金额为30万元(不含税)。则该个体零售户当月应缴纳的增值税为()万元。
一、注意事项一、本试卷由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。二、所有考生必须按要求作答,未按要求作答的,不得分。二、给定资料1.1996
一棵二叉树中共有70个叶子结点与80个度为1的结点,则该二叉树中的总结点数为
最新回复
(
0
)