首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
admin
2018-06-12
63
问题
设f(χ)为连续函数,解方程f(χ)=2(e
χ
-1)+∫
0
χ
(χ-t)f(y)dt.
选项
答案
先将原方程改写成 f(χ)=2(e
χ
-1)+χ∫
0
χ
f(t)dt-∫
0
χ
tf(t)dt 然后两边求导得f′(χ)=2e
χ
+∫
0
χ
f(t)dt. (*) 在原方程中令χ=0得f(0)=0;又在上式中令χ=0得f′(0)=2. 再将(*)式求导得f〞(χ)=2e
χ
+f(χ). 于是,问题转化为求解二阶线性常系数方程的初值问题,即 [*] 其中,y=f(χ).特征方程为λ
2
-1=0,特征根λ=±1,非齐次项ae
αχ
,α=2,α=1为单特征根,故有特解y
*
=Aχe
χ
,代入方程得A(χ+2)e
χ
-Aχe
χ
-2e
χ
.比较上式两端系数得A=1,于是y
*
=χe
χ
.因此,通解为 y=C
1
e
χ
+C
2
e
-χ
+χe
χ
. 由初值y(0)=0,y′(0)=2得C
1
=[*],C
2
=-[*].最后求得 y=f(χ)=[*]+χe
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Fg4777K
0
考研数学一
相关试题推荐
设函数则f(x)的间断点()
设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.
求下列齐次线性方程组的基础解系:(3)nχ1+(n-1)χ2+…+2χn-1+χn=0
已知齐次线性方程组有通解k1(2,-1,0,1)T+k2(3,2,1,0)T,则方程组的通解是_______.
设A是m×n矩阵,则齐次线性方程组Aχ=0仅有零解的充分条件是()
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品,则原先售出的一台是次品的概率为
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_________
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
随机试题
甲被某市政府评为道德模范,本地媒体对甲的事迹进行了宣传。乙在微博平台发文对甲的故事进行质疑,认为对甲的部分报道并不真实,该微博被大量转载。一时间,甲承受众多质疑,精神倍感痛苦,遂向人民法院起诉请求精神损害赔偿。经法院审理查明,媒体在报道的时候的确进行了过度
甲型肝炎的潜伏期为()
核衰变后质量数不变,原子序数减少1的衰变是
招标采购项目常用的风险应对方法包括()。
关于短期借款的账务处理中,正确的有()。
某彩电生产企业为增值税一般纳税人。2015年相关生产、经营资料如下:(1)企业坐落在某市区,全年实际占用土地面积共计140000平方米,其中:企业办的职工子弟学校占地10000平方米、幼儿园占地4000平方米、非独立核算的门市部占地6000平方米、职
如果你被录用为一名公安干警,遇到什么情况你会提出辞职或者请求调离?
不是所有的规章制度都具有强制性。()
设f(x)在[0,1]上可导,f’(x)>0,求φ(x)=∫01f(x)一f(t)|dt的极值点.
Theworldeconomyhasrunintoabrickwall.Despitecountlesswarningsinrecentyearsabouttheneedtoaddressapotentialhu
最新回复
(
0
)