首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
admin
2015-11-16
53
问题
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
选项
答案
证 直线AB的方程是[*] 引进辅助函数[*] 它的几何意义是连接A、B两点的直线与曲线f(x)之差,由题设知在A点、B点及C点处这两条线相交,自然有 F(a)=F(b)=F(c)=0, 也就是说在这三点处两函数的函数值相同。 由已知条件F(a)=F(c)=F(b)=0知,函数F(x)在区间[a,c]和[c,b]上满足罗尔定理。因此,在区间(a,c)内至少存在一点ξ
1
,使得F’(ξ
1
)=0;在区间(c,b)内至少存在一点ξ
2
,使得F’(ξ
2
)=0。 因a<ξ
1
<c<ξ
2
<b,且F"(x)=f"(x)在(a,b)内存在,故F’(x)在区间[ξ
1
,ξ
2
]上满足罗尔定理条件。于是,在区间(ξ
1
,ξ
2
)内至少存在一点ξ,显然ξ也在区间(a,b)内,使得 F"(ξ)=f"(ξ)=0
解析
[证题思路] 利用曲线f(x)与直线AB的方程之差作一辅助函数F(x),由题设知这两条线有三个交点,因而F(x)有三个零点,三次使用罗尔定理,可知存在ξ∈(a,b),使f"(ξ)=0。
转载请注明原文地址:https://kaotiyun.com/show/3Tw4777K
0
考研数学一
相关试题推荐
设方程确定y是x的函数,求y〞.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
比较定积分的大小.
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆阵P,使得P-1AP为对角矩阵。
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最[*]
设随机变量X和Y都服从标准正态分布,则
随机试题
社会主义初级阶段的基本经济制度是公有制为主体、多种所有制经济共同发展。必须毫不动摇地鼓励、支持和引导非公有制经济发展的依据在于()
趋同适应的结果是使同种生物形成多种生态型。
下列有关酶和辅酶(或辅基)的叙述,正确的是
某晚期癌症患者,处于临终状态,感到恐惧和绝望,当其发怒时,护士应()。
下列贷款中,利息负担最重的是()。
马卡连柯说,“要尽量多地要求一个人,也要尽可能多尊重一个人”。这句话说明的德育原则是______。
阅读下列材料,回答问题。2015年1月15日。兰某与黄某二人到金水桥游览。二人手里拿着矿泉水来到金水桥,兰某突然不知被什么东西绊倒,矿泉水随之脱落。黄某见状上前去捡那瓶矿泉水,不小心又被兰某绊倒。此时,两名特警就将黄某、兰某二人扶拉起来,接着民警
南宋郑樵编撰的《通志》,是以人物为中心的纪传体通史,其中该书的精华是()
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
A、 B、 C、 C询问购买地点的where疑问句→回答地点名词
最新回复
(
0
)