首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
admin
2017-05-31
58
问题
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x
2
+∫
0
x
tf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a
4
|f’’’(ξ)|=12∫
-a
a
|f(x)|dx.
选项
答案
由f’(x)=x
2
+∫
0
x
tf(x一t)dt[*]x
2
+x∫
0
x
f(u)du一∫
0
x
uf(u)du知f’(0)=0,f’’(x)=2x+∫
0
x
f(u)du,f’’(0)=0 根据台劳公式,有[*]其中η介于0与x之间,x∈[一a,a].于是,[*]这里m,M为|f’’’(x)|在[一a,a]上的最小值、最大值.故存在点e∈[—a,a],使得[*]
解析
只要证
由于|f’’’(x)|在[一a,a]上连续,可对f’’’(x)在[一a,a]上用介值定理.为证明
介于|f’’’(x)|在[一a,a]上的最小值和最大值之间.对f(x)用麦克劳林公式.
转载请注明原文地址:https://kaotiyun.com/show/3Yu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
用万能代换求下列不定积分:
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设函数f(x,y)连续,则二次积分等于().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且,f+’+(a)>0,证明:存在ξ∈(a,b),使得f’’(a)<0.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设L是不经过点(2,0),(-2,0)的分段光滑简单正向闭曲线,就L的不同情形计算
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
随机试题
厚为12mm、宽为600mm的对接接头,两端受500000N的拉力,材料为Q345钢,试校核其焊缝强度。
DuringtheChristmasshoppingrushinLondon,theinterestingstorywasreportedofatrampwho,apparentlythoughhadnofault
在竣工财务决算表编制过程中,属于资金来源项目的是()。
阻抗为R+jX的线路流过无功功率时,只会产生无功功率损耗。()
(中央财经大学2010年复试真题)下列关于城市维护建设税的表述中,正确的有()。
“世界环境日”是在每年的哪一天?
三班的一次联欢活动有学生没有参加,何捷、小珍中有一人没有参加,其他三人都参加了。老师在询问时,他们做了如下的回答。何捷:小马没来。小马:我不但参加了,而且还表演了节目。丹丹:我晚来了一会儿,但一直到晚会结束才走。小珍
以下关于图片框控件的说法中,错误的是
Ifambitionistobewellregarded,therewardsofambition—health,distinction,controloverone’sdestiny—mustbedeemedworth
Theprincipal’ssudden______atthepartydidn’tseemtobeverywelcome.
最新回复
(
0
)