首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
admin
2017-05-31
49
问题
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x
2
+∫
0
x
tf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a
4
|f’’’(ξ)|=12∫
-a
a
|f(x)|dx.
选项
答案
由f’(x)=x
2
+∫
0
x
tf(x一t)dt[*]x
2
+x∫
0
x
f(u)du一∫
0
x
uf(u)du知f’(0)=0,f’’(x)=2x+∫
0
x
f(u)du,f’’(0)=0 根据台劳公式,有[*]其中η介于0与x之间,x∈[一a,a].于是,[*]这里m,M为|f’’’(x)|在[一a,a]上的最小值、最大值.故存在点e∈[—a,a],使得[*]
解析
只要证
由于|f’’’(x)|在[一a,a]上连续,可对f’’’(x)在[一a,a]上用介值定理.为证明
介于|f’’’(x)|在[一a,a]上的最小值和最大值之间.对f(x)用麦克劳林公式.
转载请注明原文地址:https://kaotiyun.com/show/3Yu4777K
0
考研数学一
相关试题推荐
用无穷小量和无穷大量的主部说明:
设f(x)是奇函数,f(1)=a,且f(x+2)-f(x)=f(2).(1)试用a表示,f(2)与f(5);(2)问a取何值时,f(x)以2为周期.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设函数f(x,y)连续,则二次积分等于().
(2011年试题,19)已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中D={(x,y)10≤x≤1,0≤y≤1},计算二重积分
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D的面积A;
(2006年试题,18)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
随机试题
简述市场细分的作用。
牙片可检查,除外A.邻面龋坏情况B.牙冠颜色C.牙根数目D.牙根形态、长度E.根充情况
注意缺陷多动综合征诊断最主要的依据是
A.合谷、内庭B.太冲、中脘C.脾俞、气海D.足三里、三阴交E.神阙、关元
A、2:l等张舍钠液B、4:3:2(2/3张)混合液C、2:3:l(1/2张)混合液D、1:4(1/5张)混合液E、1:2(l/3张)混合液重度营养不良腹泻时应选用()
A.银量法B.旋光度法C.折光率测定法D.黏度测定法E.非水滴定法
先履行抗辩权行使的主体是双务合同中的()。
《建设项目环境风险评价技术导则》适用于涉及有毒有害和易燃易爆物质的()等的新建、改建、扩建和技术改造项目(不包括核建设项目)的环境风险评价。
诺贝尔生理学奖获奖者发现了免疫系统激活的关键原理,革命性地改变了人们对人体免疫系统的认识,为传染病、癌症等疾病的防治开辟了新道路。这说明()
已知非齐次线性方程组有3个线性无关的解。证明方程组系数矩阵A的秩r(A)=2;
最新回复
(
0
)