设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.

admin2017-05-31  43

问题 设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.

选项

答案由f’(x)=x2+∫0xtf(x一t)dt[*]x2+x∫0xf(u)du一∫0xuf(u)du知f’(0)=0,f’’(x)=2x+∫0xf(u)du,f’’(0)=0 根据台劳公式,有[*]其中η介于0与x之间,x∈[一a,a].于是,[*]这里m,M为|f’’’(x)|在[一a,a]上的最小值、最大值.故存在点e∈[—a,a],使得[*]

解析 只要证由于|f’’’(x)|在[一a,a]上连续,可对f’’’(x)在[一a,a]上用介值定理.为证明
介于|f’’’(x)|在[一a,a]上的最小值和最大值之间.对f(x)用麦克劳林公式.
转载请注明原文地址:https://kaotiyun.com/show/3Yu4777K
0

最新回复(0)