首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)为n阶方阵,证明:对任意的n维列向量X.都有XTAX=0→A为反对称矩阵.
设A=(aij)为n阶方阵,证明:对任意的n维列向量X.都有XTAX=0→A为反对称矩阵.
admin
2018-07-31
28
问题
设A=(a
ij
)为n阶方阵,证明:对任意的n维列向量X.都有X
T
AX=0→A为反对称矩阵.
选项
答案
必要性:取X=ε
j
=(0,…,0,1,0,…,0)
T
(第j个分量为1,其余分量全为零的n维列向量),则由0=ε
j
T
Aε
j
=a
jj
,及i≠j时,有0=(ε
i
+ε
j
)
T
A(ε
i
+ε
j
)=ε
i
T
Aε
i
+ε
i
T
Aε
j
+ε
j
T
Aε
i
+ε
j
T
Aε
j
=0+a
ij
+a
ji
+0=a
ij
+a
ji
,可知A为反对称矩阵.充分性:若A
T
=一A,则X
T
A
T
X=一X
T
AX,又X
T
A
T
X为1阶方阵.其转置不变,因而有X
T
A
T
X=(X
T
A
T
X)
T
=X
T
AX→X
T
AX=一X
T
AX→2X
T
AX=0→X
T
AX=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/3wg4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得.
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)==___________.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1—a)T是方程组(A+E)X=0的解,则a=___________.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
设齐次线性方程组的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
随机试题
低温氧化物钎料的软化温度为()℃。
统计分类标准按照其适用范围的不同,可以分为()
以下哪项不是新生儿Apgar评分的内容
男,60岁,咳喘30多年,加重10年,近因感冒终日气喘不能平卧已1月,1周来失眠、烦躁、时而恍惚来急诊。体检:双瞳孔缩小,光反应敏感,唇面发绀,呼吸无力,双肺满布于湿性啰音,心音纯整,130次/分,BP20/12kPa(150/90mmHg),血气分析p
关于高渗性脱水的病理特点正确的是
特殊管理的药品是指
已有建筑物的宗地,例如现成的写字楼、商店、宾馆、餐馆等的占地,适用()估价。
商业票据的特点是()。
根据我国《商业银行资本充足率管理办法》,下列不属于附属资本的是()。
(1)PessimismabouttheUnitedStatesrarelypaysoffinthelongrun.Timeandagain,whenAmericanshavefeltparticularlyglum
最新回复
(
0
)