有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有( )。

admin2015-06-30  49

问题 有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有(      )。

选项 A、6条
B、8条
C、I0条
D、15条

答案B

解析 要让不同直线数尽量少,则这6个点尽量共线。小圆周上2个点确定的直线最多可与大圆周上的2个点共线;大圆周上其余2个点确定的直线最多与小圆周上1个点共线。这种情况下不同直线最少。任意2点最多确定条直线,其中条确定的是同一条四点共线的直线,条确定的是三点共线的那条直线。故不同的直线最少有15一(6—1)一(3一1)=8条。
转载请注明原文地址:https://kaotiyun.com/show/4GpJ777K
0

相关试题推荐
最新回复(0)