首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
admin
2019-08-12
55
问题
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
选项
答案
令φ(x)=e
x
f(x),则φ’(x)=e
x
[f(x)+f’(x)], 由|f(x)+f’(x)|≤1得|φ’(x)|≤e
x
,又由f(x)有界得φ(-∞)=0,则 φ(x)=φ(x)-φ(-∞)=∫
-∞
x
φ’(x)dx,两边取绝对值得 e
x
|f(x)|≤∫
-∞
x
|φ’(x)|dx≤∫
-∞
x
e
x
dx=e
x
,所以|f(x)|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/4SN4777K
0
考研数学二
相关试题推荐
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
已知向量α=(1,k,1)T是A=的伴随矩阵A*的一个特征向量,试求k的值及与α对应的特征值λ.
极坐标系下的累次积分
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
求由不等式与x2+y2+(z一1)2≤1所确定的空间区域的体积.
曲线上相应于x从3到8的一段弧的长度为()
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是__________.
设y=y(x)是区间(一π,π)内过点的光滑曲线(y(x)的一阶导数连续).当一π<x<0时,曲线上任一点处的法线都过原点;当0≤x<π时,函数y(x)满足y"+y+x=0.求函数y(x)的表达式.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x←0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
试述货币的职能。
患者,男性,56岁。既往病史不详。本次因“皮肤黄染伴乏力10天,神志改变1天”入院。查体:神志朦胧,语无伦次,全身皮肤及巩膜黄染,未见肝掌、蜘蛛痣,肝脾肋下未触及。如患者相关检查报告:血总胆红素382μmol/L,结合胆红素230μmol/L,ALT4
吗啡治疗心源性哮喘,是由于()。
下列车船中,应计算缴纳车船税的是()。
2011年9月10日,由国家食物与营养咨询委员会主办的食物与营养国际研讨会在京召开,全球粮食安全及营养问题再次成为世界关注的焦点。下列关于我国粮食生产说法不正确的是()。
曲线的斜渐近线为____________.
假设"产品"表中有C型字段"产地",要求将产地以"北京"开头的产品记录全部打上删除标记,正确的SQL命令是( )。
在VBA中,能自动检查出来的错误是
Acompany’smaingoalinusingvoicemailistobeefficientandsavemoney.
To:ALLTRAVELERS,From:lisawilliams@westcoasttravels.comSubject:May1-May5TourToeveryone,Thewestcoasttourhasfina
最新回复
(
0
)