首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性. ①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示. ②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性. ①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示. ②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
admin
2018-06-27
47
问题
设α
1
,α
2
,…,α
s
是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.
①如果β,γ都可用α
1
,α
2
,…,α
s
线性表示,则β+γ也可用α
1
,α
2
,…,α
s
线性表示.
②如果β,γ都不可用α
1
,α
2
,…,α
s
线性表示,则β+γ也不可用α
1
,α
2
,…,α
s
线性表示.
③如果β可用α
1
,α
2
,…,α
s
线性表示,而γ不可用α
1
,α
2
,…,α
s
线性表示,则β+γ可用α
1
,α
2
,…,α
s
线性表示.
④如果β可用α
1
,α
2
,…,α
s
线性表示,而γ不可用α
1
,α
2
,…,α
s
线性表示,则β+γ不可用α
1
,α
2
,…,α
s
线性表示.
选项
答案
正确的是①和④,②和③都不对. ①显然. ②不对,可用一个反例说明. 取β不可用α
1
,α
2
,…,α
s
线性表示,γ=-β,则γ也不可用α
1
,α
2
,…,α
s
线性表示,但是β+γ=0,是可用α
1
,α
2
,…,α
s
线性表示. 用反证法说明③不对④对.如果β+γ可用α
1
,α
2
,…,α
s
线性表示,则因为β可用α
1
,α
2
,…,α
s
线性表示,所以γ=(β+γ)-β也可用α
1
,α
2
,…,α
s
线性表示,与条件矛盾. n维向量组β
1
,β
2
,…,β
s
可以用α
1
,α
2
,…,α
s
线性表示,即β
1
,β
2
,…,β
s
中的每一个都可以用α
1
,α
2
,…,α
s
线性表示. 向量组之间的线性表示问题与矩阵乘法有密切关系:乘积矩阵AB的列向量组可以用A的列向量组线性表示,而AB的行向量组可以用B的行向量组线性表示. 反过来,如果向量组β
1
,β
2
,…,β
s
可以用α
1
,α
2
,…,α
s
线性表示,则矩阵(β
1
,β
2
,…,β
s
)可分解为矩阵(α
1
,α
2
,…,α
s
)和一个矩阵C的乘积.(C这样构造:它的第i个列向量就是β
i
对α
1
,α
2
,…,α
s
的分解系数.)称C为β
1
,β
2
,…,β
s
对α
1
,α
2
,…,α
s
的表示矩阵.(C不一定是唯一的,唯一的充分必要条件是α
1
,α
2
,…,α
s
线性无关.) 向量组的线性表示关系有传递性,即如果向量组β
1
,β
2
,…,β
s
可以用α
1
,α
2
,…,α
s
线性表示,而α
1
,α
2
,…,α
s
可以用γ
1
,γ
2
,…,γ
s
线性表示,则β
1
,β
2
,…,β
s
可以用γ
1
,γ
2
,…,γ
s
线性表示. 当向量组α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
s
互相都可以线性表示时,就说它们等价,并记作{α
1
,α
2
,…,α
s
}[*]{β
1
,β
2
,…,β
s
}. 等价关系也有传递性.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ik4777K
0
考研数学二
相关试题推荐
设f’(x0)=f’’(x0)=f(x0)=0,f(4)(x0)>0,则x=x0是f(x)的
设函数f(x)在区间[a,b]上具有三阶连续导数,求证:存在η∈(a,b)使得
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设f(x)为连续函数,则()
没常数a>0,积分,试比较I1与I2的大小。要求写明推导过程.
函数在[-π,π]上的第一类间断点是x=
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
随机试题
车身发生弯曲和扭曲的原因和部件有哪些?
A.脱肛B.肛痈C.肛漏D.息肉痔E.肛隐窝炎以大便带血为主要临床表现的疾病是
A、克罗恩病B、血吸虫病C、溃疡性结肠炎D、慢性细菌性痢疾E、阿米巴肠炎病变可累及大肠黏膜和黏膜下层,多呈弥漫性、连续性分布的是
2014年1月,北京居民李某的一件珍贵首饰在家中失窃后被窃贼带至甲国。同年2月,甲国居民陈某在当地珠宝市场购得该首饰。2015年1月,在获悉陈某将该首饰带回北京拍卖的消息后,李某在北京某法院提起原物返还之诉。关于该首饰所有权的法律适用,下列哪一选项是正确的
城市次干道两侧可设置公共建筑的出入口,且相邻出入口的间距不宜小于()。
【2011年真题】某投保建筑工程一切险(含第三者责任保险)的工程项目,在保险期限内出现如下情况,其中应由保险人负责赔偿损伤的是()。
下列各项中,不会引起固定资产账面价值发生变化的是()。
某物业服务企业拟申请一级资质,其管理的办公楼为25万m2,高层住宅至少为()万m2。
请认真阅读下列材料,并按要求作答。问题:简要介绍什么是倚音记号?
一个孩子在2012年9月16日说:“我活过的月数以及我活过的年数之差,到今天为止正好是111。”那么这个孩子是哪一天出生的?
最新回复
(
0
)