设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.

admin2015-08-14  280

问题 设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.

选项

答案[*] 由γ1,γ2,…,γt,η1,η2,…,ηs线性相关,知存在k1,k2,…,kt,l1,l2,…,ls不全为零,使得 k1γ1+k2γ2+…+ktγt+l1η1+l2η2+…+lsηs=0,令ξ=k1γ1+k2γ2+…+ktγt,则ξ≠0(否则k1,k2,…,kt,l1,l2,…,ls全为0),且ξ=一l1η1-l2η2…-lsηs,即一个非零向量ξ既可由γ1,γ2,…,γt表示,也可由η1,η2,…,ηs表示,所以Ax=0和Bx=0有非零公共解. [*] 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k1γ1+k2γ2+…+ktγt且ξ=一l1η1一l2η2一…-lsηs,于是,存在k1,k2,…,kt不全为零,存在l1,l2,…,ls不全为零,使得 k1γ1+k2γ2+…+ktγt+l1η1+l2η2+…+lsηs=0,从而γ1,γ2,…,γs,η1,η2,…,ηs线性相关.

解析
转载请注明原文地址:https://kaotiyun.com/show/5034777K
0

最新回复(0)