首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L位于χOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(),求L的方程.
设曲线L位于χOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(),求L的方程.
admin
2019-08-23
47
问题
设曲线L位于χOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(
),求L的方程.
选项
答案
设点M的坐标为(χ,y),则切线MA:Y-y=y′(X-χ). 令X=0,则Y=y-χy′,故A点的坐标为(0,y-χy′). 由|MA|=|OA|,得|y-χy′|=[*] 即2yy′-[*]y
2
=-χ,或者[*]=-χ, 则y
2
=[*]=χ(-χ+C), 因为曲线经过点([*]),所以C=3,再由曲线经过第一象限得曲线方程为 y=[*](0<χ<3).
解析
转载请注明原文地址:https://kaotiyun.com/show/59A4777K
0
考研数学二
相关试题推荐
(I)设A是n阶方阵,满足A2=A,证明A相似于对角矩阵;(Ⅱ)设A=,求可逆矩阵P使得P-1AP=A,其中A是对角矩阵.
问a,b,c为何值时,向量组α1,α2,α3与β1,β2,β3是等价向量组?向量组等价时,求α1由β1,β2,β3线性表出的表出式及βα1由α1,α2,α3线性表出的表出式.
设2阶矩阵A有特征值λ1=1,λ2=-1.则B=A3-A2-A﹢E=_______.
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,﹢∞)上也严格单调增加.
设函数F(x)在所讨论的区间上可导.下述命题正确的是()
设方阵A满足条件ATA=E,其中AT是A的转置矩阵,E为单位阵.试证明A的实特征向量所对应的特征值的绝对值等于1.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2未知.现从中随机抽取16个零件,测得样本均值=20cm,样本方差S2=1cm2,则μ的置信水平为0.90的置信区间是()
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
微分方程满足初始条件y|x=2=1的特解是___________.
随机试题
李某在封闭的小区内练车,因技术不熟,撞死了散步的刘某,李某的行为构成()。
依据明确概念角度的不同,定义大致可分为____、____、内涵与外延相结合的_______。
注意是一种()
幢是指一座独立的,包括不同结构和不同层次的房屋。()
咨询工程师(投资)有下列情形之一,不予继续注册,分别是()。
甲、乙、丙、丁拟共同投资设立一有限合伙企业,甲、乙为普通合伙人,丙、丁为有限合伙人。四人草拟了一份合伙协议。该合伙协议的下列内容中,符合合伙企业法律制度规定的是()。
个体在群体压力下表现出与群体中大多数人一致的意见和行为的现象叫作()
蔡戈尼效应:指对未完成的工作比对已完成的工作有较好的记忆效果的现象,1927年由德国心理专家蔡戈尼在记忆试验中发现。下列属于蔡戈尼效应的是:
郭守敬
Eachcompanyhasmany"publics’whoshouldbeablenotonlyrecognizeitsname【21】______tocorrectlyidentifyitsindustrya
最新回复
(
0
)