首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-07-28
60
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(I)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 于是A=[*](b
1
,b
2
,…,b
n
). 令[*],显然α,β都不是零向量且A=αβ
T
; 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1,又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/5WN4777K
0
考研数学二
相关试题推荐
曲线的渐近线的条数为().
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
已知a,b,c不全为零,证明方程组只有零解.
给定曲线y=x2+5x+4,(Ⅰ)确定b的值,使直线y=x+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
下列反常积分中发散的是
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设向量组α1=(a,0,c),α2=(b,c,0),α3=(0,a,b)线性无关,则a,b,c必满足关系式________.
确定下列函数的定义域,并做出函数图形。
(2012年试题,二)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|__________.
随机试题
导致弥散性血管内凝血患者出血的主要原因是
有机磷农药中毒时,出现烟碱样症状的表现是()。
A.心脏毒性B.出血性膀胱炎C.肝损伤D.肺纤维化E.腹泻米托蒽醌可引起的主要不良反应()。
建设工程项目进度控制的管理措施涉及( )。
某汽车企业2004年第一季度汽车完成周转量200万吨公里,挂车完成周转量80万吨公里,拖运率为()。[2005年真题]
紧张、焦虑、恐惧等消极情绪出现,对身心健康都是有害无益的,应该尽量压抑这类情绪。()
商洽性文件的主要文种是()
Whereistheman?
Wherehavethefamilydecidedtogoforavacationthissummer?
如果你是一个中等水平的读者,你能够以每分钟300字的速度阅读一本中等水平的书。不过,你必须每天这样坚持下去,否则就无法保持这种水平。【T1】你也不可能以这个速度阅读科学、数学、农业、商业方面的书,或是对你来说内容生疏的书。(Nor…or…)你绝不会以这种速
最新回复
(
0
)