首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-07-28
46
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(I)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 于是A=[*](b
1
,b
2
,…,b
n
). 令[*],显然α,β都不是零向量且A=αβ
T
; 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1,又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/5WN4777K
0
考研数学二
相关试题推荐
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
已知二元函数f(x,y)满足且f(x,y)=g(u,v),若=u2+v2,求a,b.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b).使得|f’’(ξ)|≥|f(b)-f(a)|.
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=_________.
设f(x)在[0,b]可导,f’(x)>0(∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
已知A是3阶不可逆矩阵,-1和2是A的特征值,B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
随机试题
决定A,B及H抗原的基因是控制细胞合成某种特异的()(1988年)
男,56岁,高血压病史3年。晨起口齿不清,口角歪斜,左侧肢体活动障碍3天。目前最合适以下哪项检查()
医学伦理学基本范畴的良心指的是
男,32岁。左腮腺后下极腺淋巴瘤为2cm×3cm,行区域切除术,术中发现腮腺下极有数个淋巴结,对这些淋巴结的处理应是
A、利多卡因B、阿司匹林C、后马托品D、异丙嗪E、金刚烷胺上市后开发新适应证为抗心律失常的药物是
背景资料:甲监理公司专业监理工程师组织乙施工单位质量员进行检验批的验收,形成混凝土原材料、配合比设计检验批质量验收记录,记录如下表所示。施工单位资料员收集的混凝土原材料、配合比设计检验批质量验收记录,存放在()类文件中。
如图6-24所示,管道进口形式从左到右排列为A、B、C、D,局部阻力系数由大到小的排列顺序是()。
进口口岸()申报日期()
海关根据企业分类管理标准对加工贸易企业设定A、B、C、D四类,以下分类管理的具体内容错误的是:
Eversincetheearlydaysofmoderncomputinginthe1940s,thebiologicalmetaphorhasbeenirresistible.Thefirstcomputers—r
最新回复
(
0
)