首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
admin
2021-11-09
37
问题
讨论p,t为何值时,方程组
无解?有解?有解时写出全部解.
选项
答案
①用初等行变换把增广矩阵化为阶梯形矩阵 [*] 于是,当t≠-2时,有r(A|β)>r(A),此时方程组无解. 当t=-2时(p任意),r(A|β)=r(A)≤3<4,此时有无穷多解. ②当t=-2,P=-8时, [*] 得同解方程组[*] 令χ
3
=χ
4
=0,得一特解(-1,1,0,0)
T
. 导出组有同解方程组[*] 对χ
3
,χ
4
赋值得基础解系(4,-2,1,0)
T
,(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c
1
(4,-2,1,0)
T
+c
2
(-1,-2,0,1)
T
,其中c
1
,c
2
可取任何数. ③当t=-2,P≠-8时, [*] 得同解方程组[*] 令χ
4
=0,得一特解(-1,1,0,,0)
T
. 导出组有同解方程组[*] 令χ
4
=1,得基础解系(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c(-1,-2,0,1)
T
,其中c可取任何数.
解析
转载请注明原文地址:https://kaotiyun.com/show/5cy4777K
0
考研数学二
相关试题推荐
当x≥0时,函数f(x)可导,有非负的反函数g(x),且恒等式成立,则函数f(x)=().
设f(x)在[1,+∞)内可导,f’(x)<0且=a﹥0,令an=.证明:{an}收敛且0≤.
证明:,其中a﹥0为常数。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
设D是由曲线y=x3与直线所围成的有界闭区域,则二重积分()
二元函数f(x,y)在点(xo,yo)处的下面4条性质:(I)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
随机试题
下列说法正确的是:()
影响房地产价格的环境因素不包括()。
事故预警应遵循的基本原则是()。
如果投资方案在财务上可行,则有()。
基金销售机构,是指依法办理基金份额的认购、申购和赎回的基金管理人以及取得基金代销业务资格的其他机构。通过()方式对客户的财务状况更了解,对客户控制力较强,更容易发现产品和服务方面的不足,易于建立双向持久的联系,提高忠诚度。
沼气:甲烷:气体
嘉许:赞美:叹为观止
A.That’sacceptableB.hereisyourbillC.thisisamiscalculationA:Goodmorning,sir.CanIhelpyou?B:Yes,I’mleaving
Johnwasveryupsetbecausehewas______bythepolicewithbreakingthelaw.
股票评估与股票有关的价格是()。
最新回复
(
0
)