首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2,…,βr线性无关的充分必要条件是A的
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2,…,βr线性无关的充分必要条件是A的
admin
2017-04-19
101
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
r
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
…β
r
]=[α
1
α
2
… α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
… β
r
]及P=[α
1
α
2
解析
转载请注明原文地址:https://kaotiyun.com/show/5fu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设n维向量α=(a,0,…,0,a)T,a
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设函数f(x)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
随机试题
具有利尿脱水作用的溶液是
A.HBsAgB.抗一HBsC.HBeAgD.抗一HBeE.抗一HBc哪项标志物阳性可提示乙肝具有传染性
牙源性角化囊肿和造釉细胞瘤的主要区别在于
患儿水肿先从眼睑开始,继而四肢,甚则全身浮肿,来势迅速,颜面为甚,皮肤光亮,按之凹陷即起,小便少,或有尿血,并有发热、恶风、肢体酸痛,苔薄白,脉浮。治疗首选方
ABS树脂是下列哪几种物质的共聚物?()
根据《城市规划编制单位资质管理规定》,下列关于城市规划编制单位资质监督管理的表述中,不正确的是()
在财政转移支付制度设计上,必须考虑区域间和城乡间的发展差距,这体现了公共财政()的特征
IfirstwenttohearaliverockconcertwhenIwaseightyearsold.Mybrotherandhisfriendswereallfansofaheavymetalg
课堂导入的要求有哪些?
A、Shegotuplaterthanusual.B、Shetookthewrongtrain.C、Sheforgotthatsheshouldwork.D、Thetrainwaslate.A本题问的是上班迟到的原
最新回复
(
0
)