首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
51
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Ru4777K
0
考研数学一
相关试题推荐
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设某厂商生产某种产品,其产量与人们对该产品的需求量Q相同,价格为P,试利用边际收益与需求价格弹性之间的关系解释|Ep|<1时,价格的变动对总收益的影响.
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
行列式为f(x),则方程f(x)=0的根的个数为
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设n维向量α=(a,0,…,0,a)T,a
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
随机试题
下列关于生活常识的说法,不正确的是:
精神分裂症偏执型的突出临床表现为【】
医疗卫生机构违反条例规定,公开艾滋患者信息的,应依照哪项法规予以处罚
对于一国的偿债能力,国际上公认的评价标准之一是:外汇储备与短期外债余额相比应超过()。
实现有效进度控制的关键是()。
家庭费用分摊的方式包括( )。Ⅰ.统收统支法:家庭财务是由夫妻一方对双方收支统一记账管理Ⅱ.财产具体分割法:明确共同债权、债务和个人债权、债务,以及财产分割以后怎么去履行Ⅲ.三账户法:比较适合采取分别财产制的夫妻。夫妻各自记账,属于个人的支出由个人
在社会规范学习与道德品质发展的研究中,班杜拉的研究重点是()。
注:1.绝对额按现价计算,增长速度按不变价计算;2.三次产业分类依据国家统计局2012年制定的《三次产业划分规定》;3.行业分类采用《国民经济行业分类(GB/T4754—2011)》;4.本表中国内生产总值总量数据中,有的不等于各产业(行
Itisaneverydayobservationthatanimalsareborn,grow,andmaturethenbegintolosesomeoftheircapabilities,andfinally
A、Writethelabreport.B、FindoutProf.Smith’sschedule.C、Interviewsomehighschoolstudents.D、Finishtheirexperiment.D行动
最新回复
(
0
)