首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P-1AP=A。
admin
2017-01-14
26
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
-1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E-B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)= [*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6Ru4777K
0
考研数学一
相关试题推荐
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A的元素全为1,则A的n个特征值是________.
微分方程y"-2y’+2y=ex的通解为________.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%高
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
随机试题
下列选项中,属于生酮兼生糖的氨基酸有()。
在营销计划实施过程中会不可避免地出现意外情况,为了实现营销目标,银行经常采用的市场营销控制方法包括()。
甲咨询公司与客户签订一个提供咨询服务的合同,从而使企业为客户提供专业意见(专业报告),专业意见针对客户事实情况有关。如果客户终止咨询合同,假定甲咨询公司完全遵守合同义务,合同要求客户赔偿企业发生的成本,另加15%的毛利率,15%的毛利率接近企业类似合同取得
现代生物技术中有关“克隆”的说法错误的是()。
(2012年广东.材料三)根据下列资料,回答下列问题。下列说法错误的是()。
按生产要素分配有多种不同的分配形式,就其内容不同可以分为()
有以下程序#include<stdio.h>main(){inta=0,b=0;/*给a赋值a=10;b=20;给b赋值*/printf("a+b=%d\n",a+b);/*输出计算结果*/}程序运行后的输出结果是
有如下程序#include<stdio.h>voidget_put(){charch;ch=getchar();if(ch!=’\n’)get_put();putchar(ch);}
Youwillhearfivepeopletalkingabouttheirjobs.Foreachextracttherearetwotasks.ForTaskOne,choosethecorresponding
OneofLondon’smostbeautifulgardensisbeingtransformedintotheancientSilkRoadthiswintertocelebrateChineseNewYear
最新回复
(
0
)