首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设幂级数an(x-b)n在x=0处收敛,在x=2b处发散,求幂级数anxn的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设幂级数an(x-b)n在x=0处收敛,在x=2b处发散,求幂级数anxn的收敛半径R与收敛域,并分别求幂级数的收敛半径.
admin
2018-09-25
64
问题
设幂级数
a
n
(x-b)
n
在x=0处收敛,在x=2b处发散,求幂级数
a
n
x
n
的收敛半径R与收敛域,并分别求幂级数
的收敛半径.
选项
答案
令t=x-b,收敛中心x
0
=b的幂级数[*]a
n
(x-b)
n
化为收敛中心t
0
=0的幂级数[*]a
n
t
n
.根据阿贝尔定理可以得到如下结论: 因为[*]a
n
(x-b)
n
在x=0处收敛,所以[*]a
n
t
n
在t=-b处收敛,从而当|t|<|-b|=|b|时,幂级数[*]a
n
t
n
绝对收敛. 由于[*]a
n
(x-b)
n
在x=2b处发散,故[*]a
n
t
n
在t=b处发散,进而当|t|>|b|时,幂级数[*]a
n
t
n
发散. 由上述两方面,根据幂级数收敛半径的定义即知[*]a
n
x
n
的收敛半径R=|b|,其收敛域为[-|b|,|b|). 又因为幂级数[*]分别经逐项求导和逐项积分所得,根据幂级数逐项求导、逐项积分所得幂级数的收敛半径不变的性质,即知它们的收敛半径都是R=|b|.
解析
转载请注明原文地址:https://kaotiyun.com/show/6vg4777K
0
考研数学一
相关试题推荐
设A是n阶可逆矩阵,且A与A-1的元素都是整数,证明:|A|=±1.
若A=(4,5,6),则|A|=__________.
设随机变量X在区间[一1,1]上服从均匀分布,随机变量(Ⅰ)Y=,试分别求出DY与Cov(X,Y).
设z=f(t,et)dt,其中f是二元连续函数,则dz=__________.
求证:方程lnx=dx在(0,+∞)内只有两个不同的实根.
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
(03年)已知平面上三条不同直线的方程分别为l1:ax+Zby+3c=0l2:bx+2cy+3a=0l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
(95年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使
随机试题
对于皮脂腺囊肿合并感染的治疗,下列说法恰当的是
在经济区划的基础上开展经济区的区域规划,对经济区的建设进行总体部署有多种意义,主要体现在()。
拍卖是以()形式进行的买卖。
下列关于城镇土地使用税纳税义务发生时间相关论述中,正确的有()。
诊断性评价又称中期评价,是在健康教育活动中针对活动效果而进行的持续性的评价。()
人民政协作为爱国统一战线的组织、多党合作和政治协商的重要机构、人民民主的重要实现形式,是具有中国特色的制度安排。新时代做好人民政协工作的主线是()
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设随机变量X服从正态分布N(μ,1),已知P{X≤3}=0.975,则P{X≤一0.92}=________.
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions41-45,choosethemostsuitableonefromthelist(A、B、C、
FTP的作用可以完成文件传输,将远程计算机的文件拷贝到自己的计算机上被称为【 】。
最新回复
(
0
)