首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,a是n维列向量,b为常数, 证明PQ可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,a是n维列向量,b为常数, 证明PQ可逆的充分必要条件是αTA-1α≠b.
admin
2015-07-22
97
问题
设A为n阶非奇异矩阵,a是n维列向量,b为常数,
证明PQ可逆的充分必要条件是α
T
A
-1
α≠b.
选项
答案
|PQ|=|A|
2
(b一α
T
A
-1
α),PQ可逆的充分必要条件是|PQ|≠0,即α
T
A
-1
α≠b.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Ew4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)有且仅有一个根.
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f(a+b/2)+(b-a)3/24f"(ξ).
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3),证明:存在ξ∈(0,3),使得f"(ξ)=2f’(ξ)=0.
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
设A=(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设(X,Y)服从D={(x,y)|0≤y≤1,y≤x≤3-y)上的均匀分布.求(X,Y)的协差阵,判断X与Y是否相关;
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化。
设z=z(x,y)是由f(y-x,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
设X1,X2,…,Xn为来自总体N(μ,σ2)的简体随机样本,又为样本均值,记:
随机试题
简述学习型组织的特征。
男性,10岁,持续性镜下血尿2年余,尿红细胞形态学检查示为肾小球性血尿,无其他症状,未进一步诊治,3个月前始出现听力障碍,且进行性加重。首先考虑的诊断是
女,X岁,肢体紫斑反复发作3年。体检:双下肢及上臂紫斑,呈针尖样,表面光滑,肝脾不大,血小板110×109/L,出血时间6分钟,凝血时间8分钟,束壁试验阳性,血小板聚集功能稍低,骨髓象正常,其最可能的诊断是
脓肿形成后应尽早
关于数罪并罚的说法,下列选项正确的是:()
随着宏观调控体系的初步建立,我国对市场经济基本上实现了从()计划向指导性计划、从直接调控向间接调控的转变。
作为资产评估客体的资产,存在形式是多种多样的,按()形式划分可将资产分为有形资产和无形资产。
语音是语言的声音,所以必须从物理学角度和生理学角度两个方面进行分析才是全面的。()
实验发现,孕妇适当补充维生素D可降低新生儿感染呼吸道合胞病毒的风险。科研人员检测了156名新生儿脐带血中维生素D的含量,其中54%的新生儿被诊断为维生素D缺乏,这当中有12%的孩子在出生后一年内感染了呼吸道合胞病毒,这一比例远高于维生素D正常的孩子。
Youwillhearfiveshortrecordings.Foreachrecording,decidewhichfineofbusinessisthecompanyin.Writeonelett
最新回复
(
0
)