首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2019-04-17
135
问题
(2008年)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α
2
+α
3
] =[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
-1
左乘上式两端,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7JV4777K
0
考研数学二
相关试题推荐
设闭区域D:x2+y2≤v,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
设函数f(x,y)可微,又f(0,0)=0,f’x(0,0)=a,f’y(0,0)=b,且φ(t)=f[t,f(t,t2)],求φ’(0).
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt证明F’(x)单调增加;
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
曲线y=x+的凹区间是___________.
设u=u(x,y)二阶连续可偏导,且,若u(x,3x)=x,u’x(x,3x)=x3,则u’’xy(x,3x)=______
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设平面图形A由x2+y2≤2x及y≥x所确定,则A绕直线x=2旋转一周所得旋转体的体积公式为().
设f(x)在=0处连续且求f(0)并讨论f(x)在x=0处是否可导?若可导,请求出f’(0).
随机试题
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
以下属于银行信用的有
固摄血液的重要因素是
男性患者,26岁,肺部查体可闻及异常支气管肺泡呼吸音,其可能的诊断不包括
A公司、B公司均为石油公司,双方在D国成立了单独主体C,以共同在D国进行石油及天然气的勘探、开发和生产。A公司、B公司共同控制主体C。主体C的法律形式将主体C的资产、负债与A公司及B公司分隔开来。A公司、B公司及主体C签订协议,规定A公司与B公司按照各自在
在编制银行存款余额调节表时,下列未达账项中,会导致企业银行存款日记账的账面余额小于银行对账单余额的有()。
()对于自行车相当于土豆对于()
20多年前,旅居海外十几年的梁实秋刚回到台北,朋友们一个接一个地请他吃饭。梁实秋是有名的“早起早睡”的人,晚上8点睡觉,天不亮,4点就起床写作。偏偏那些朋友都是夜猫子,每天请他深夜12点吃夜宵。梁实秋吃了几顿,受不了了,想出个好法子,对大家宣布:“谁请我吃
社会意识形态是指______。
下列关于国家机构和社会组织区别的表述错误的是()。
最新回复
(
0
)