首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
admin
2016-07-22
34
问题
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H
2
.
选项
答案
由于A为n阶正定矩阵,故存在正交矩阵U,使得 [*] 这里,0<λ
1
≤λ
2
≤…≤λ
n
为A的全部特征值. [*] 并且H仍为正定矩阵. 如果存在另一个正定矩阵H
1
,使得A=[*],对于H
1
,存在正交矩阵U
1
,使得 [*] 令[*] 则λ
i
p
ij
=λ
j
p
ij
(i,j=1,2,…,n),当λ
i
≠λ
j
时,p
ij
=0,这时[*](i,j=1,2,…,n);当λ
i
=λ
j
时,当然有[*](i,j=1,2,…,n).故 [*] 即H=H
1
.
解析
转载请注明原文地址:https://kaotiyun.com/show/7iw4777K
0
考研数学一
相关试题推荐
设函数y=y(x)满足微分方程y”+4y’+4y=0和初始条件y(0)=2,y’(0)=-4,求广义积分∫0+∞y(x)dx.
有一单位球,球内各点处到该球外一定点(0,0,a),(a>1)的距离成反比,求此球的质心.
设半径为r的球的球心位于半径为R的定球面上,试问当前者夹在定球内部的表面积最大时,r等于多少?
设μ=f(x2+y2,xz),z=z(x,y),由ex+ey=ez确定,其中f二阶连续可偏导,求。
已知函数f(x)在[0,1]上具有二阶导数,且f(0)=0,f(1)=1,∫01f(x)dx=1,证明:存在ξ∈(0,1),使得f’(ξ)=0;
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)=0的解;
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
考虑函数y=sinx,问:(1)t取何值时,图6—17中阴影部分的面积S1和S2之和S=S1+S2最小?(2)t取何值时,面积S=S1+S2最大?
随机试题
A.消风散B.越鞠丸C.杏苏散D.痛泻要方属于和法的方剂是
患者,女性,产后,右乳房红肿疼痛,超声见回声不均匀,低回声肉见点状回声流动。如图所示考虑为
按部位痞满可以分为
脑卒中偏瘫患者上肢出现屈肌协同运动,最不可能出现的是
具有温中降逆、温肾助阳作用的药物是具有散寒止痛、温肺化饮作用的药物是
在Word中设置字号时,选择的中文字号越小,设置的字符越小。()
企业实施清洁生产的途径有()。
2017年7月10日,甲公司与A银行签订借款合同,约定:借款金额550万,年利率6.5%;借款期限1年。同日,甲公司将其一宗土地的建设用地使用权抵押给A银行,双方签订了书面抵押合同,并于7月11日办理了抵押登记。A银行还要求甲公司提供其他担保,于是甲公司请
关于信息资源管理描述正确的是()。
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
最新回复
(
0
)