首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导,则( ).
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导,则( ).
admin
2019-08-23
42
问题
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导,则( ).
选项
A、若
f(χ)=0,则
f′(χ)=0
B、若
f′(χ)=0,则
f(χ)=0
C、若
f(χ)=+∞,则
f′(χ)=+∞
D、若
f′(χ)=A>0,则
f(χ)=+∞
答案
D
解析
取f(χ)=
,显然
f(χ)=0,但
=+∞,A不对;
取f(χ)=cosχ,显然
=0,但
f(χ)=1≠0,B不对;
取f(χ)=χ,显然
f(χ)=+∞,但
f′(χ)=1,C不对,应选D.
事实上,取ε=
>0,因为
f′(χ)=A,所以存在X>0.
当χ>X时,|f′(χ)-A|<
,从而f′(χ)>
.
当χ>X时,f(χ)-f(X)=f′(ξ)(χ-X)>
(χ-X)(X<ξ<χ),
从而f(χ)>f(X)+
(χ-X),两边取极限得
f(χ)=+∞,应选D.
转载请注明原文地址:https://kaotiyun.com/show/7nA4777K
0
考研数学二
相关试题推荐
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内至少存在一点ξ,使。
微分方程2y”-5y’﹢2y=xe2x的通解为y=_______.
设ξ1,ξ2,ξ3,ξ1﹢aξ2-2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解()
设A是m×n矩阵,将A的行及列分块,记成对A作若干次初等行变换后,记成则下列结论中错误的是()
设是等价矩阵,则a=______.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=AijATA=E且|A|=1;
计算二重积分其中D是由直线y=1、曲线y=x2(x≥0)以及y轴所围成的区域。
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则()
已知f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,且f(0)=0。求f(x)在区间[0,3π/2]上的平均值;
随机试题
在市场经济条件下,利率水平的高低主要取决于()。
悬臂梁受载情况如图所示,在截面C上:
控制图的异常现象是指点子排列出现了( )等情况。
以下关于产业组织创新的说法不正确的是( )。
下列有关持续经营假设的说法中,不正确的有()。
阅读材料完成下列问题。《傅雷家书两则》原文1954年10月2日聪,亲爱的孩子。收到9月22日晚发的第六信,很高兴。我们并没为你前信感到什么烦恼或是不安。我在第八封信中还对你预告,这种精神消沉的情形,以后还是会有的。我是过来人,
最近一期的《瞭望新闻周刊》有文章称“消费就是爱国”,有关专家撰文加以嘲笑:我从来没有想到________的生活方式,居然会成为一种道德瑕疵。填入划横线部分最恰当的一项是()。
下列人员,享有选举权的是()。
物理安全技术包括机房安全和________。
Hewouldhavefinishedhiscollegeeducation,buthe______toquitandfindajobtosupporthisfamily.
最新回复
(
0
)