首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3. 且α1+α2=,α2+α3=, 则方程组AX=b的通解为_______.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3. 且α1+α2=,α2+α3=, 则方程组AX=b的通解为_______.
admin
2019-03-18
52
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,r(A)=3.
且α
1
+α
2
=
,α
2
+α
3
=
,
则方程组AX=b的通解为_______.
选项
答案
X=[*](k为任意常数)
解析
因为r(A)=3,所以方程组AX=b的通解为kξ+η,
其中ξ=α
3
-α
1
=(α
2
+α
3
)一(α
1
+α
2
)=
,
η=
,于是方程组的通解为X=
(k为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/9IV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的逆矩阵为A一1=,试求其伴随矩阵A*的逆矩阵.
设随机变量X1,X2,…,Xn(n>1)相互独立同分布,且期望均为μ,方差均为σ2(σ2>0),令的相关系数ρ.
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0.已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤χ≤1,0≤y≤1;(Ⅱ)I=|3χ+4y|dχdy,其中D:χ2+y2≤1;(Ⅲ)I=ydχdy,其中D由直线χ=-2,y=0,y=2及曲线χ=-所围成.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时,(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表示式;(Ⅲ
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内,g(x)≠0.(2)在开区间(a,b)内至少存在一点ξ,使
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2)=∫ab
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫0ξf(t)dt.
随机试题
关于胰液分泌的调节,下列哪项错误
在过去两年中,有5架F717飞机坠毁。针对F717飞机存在设计问题的说法,该飞机制造商反驳说:调查表明,每一次事故都是由飞行员操作失误造成的。飞机制造商的上述反驳基于以下哪一项假设?
领导是为了维持秩序,在一定程度上实现预期的计划,使事物能够高效地运转,而管理则能带来变革,通常是剧烈的、积极的变革。()
热烧伤的病理改变主要取决于
在血浆样品制备中,常用的抗凝剂是()。
根据《药品注册管理办法》,下列药品批准文号格式符合规定的是()。
根据《著作权法》,著作权保护期限不受限制的权利是()。
某设备制造厂系增值税一般纳税人,2018年6月以自产设备投资一家生物制药公司,该设备的不合增值税公允价值为2000000元,账面成本为1400000元,当年该厂的年应纳税所得额为5000000元。若设备制造厂选择递延缴纳企业所得税后第二年又
()是领导者在其知识、经验、才能和气质等因素的基础上形成的,体现领导方法的创造性、创新性应用。
A、Bysendingfewerdiscstothevoters.B、Byresortingtothelawsandregulations.C、Byusingstrongeranti-piracytechnolog.D
最新回复
(
0
)