首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2019-03-23
60
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
—η
2
,η
2
+η
3
,η
3
—η
4
,η
4
+η
1
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
—η
2
+η
3
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
D、η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
答案
D
解析
由已知条件,Ax=0的基础解系是由四个线性无关的解向量构成的,而B选项中仅三个解向量,不符合要求,故B选项不是基础解系。
选项A和选项C中,都有四个解向量,但因为
(η
1
—η
2
)+(η
2
+η
3
)—(η
3
—η
4
)—(η
4
+η
1
)=0,
(η
1
+η
2
)—(η
2
+η
3
)+(η
3
+η
4
)—(η
4
+η
1
)=0,
说明A、C两项中的向量组均线性相关,因而A、C两项也不是基础解系。
对于D选项中的向量,
(η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
而
=2≠0,
知η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以D选项是基础解系,故选D。
转载请注明原文地址:https://kaotiyun.com/show/AXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
判断下列函数的单调性:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
随机试题
下列哪种肿瘤属于恶性肿瘤
等级证书期满后,检测机构应该提前()向原发证机构提出换证申请
所有者权益是企业投资人对企业净资产的要求权,在数量上所有者权益等于( )。
效率是一种投入产出关系,而效果是相对于()而言的。
下列行为中()属于套汇。
截至2×13年3月31日,A上市公司(简称“A公司”)、B公司对C债权人负债金额共计8000万元(均为其他应付款),其中A公司负债2000万元,B公司负债6000:万元,A公司为B公司债务承担连带担保责任。B公司为A公司的子公司,A公司持有其80%股权。2
“寓德育于教学之中,寓德育于活动之中,寓德育于教师榜样之中,寓德育于学生自育之中,寓德育于管理之中。”这体现的德育过程是()。
对9周岁儿童所为下列行为效力的判断,正确的有()。
小明在游戏中把凳子当马骑,这种活动反应的想象功能是()
当前火星探测成为天文热点,火星或其他星球是否有生命体也成为科学界研究的新显学。据报道,某国科学家在一块60万年前来到地球的火星陨石上发现了有机生物的痕迹,因为该陨石由二氧化碳化合物构成,该化合物产生于甲烷,而甲烷可以是微生物受到高压和高温作用时产生的。由此
最新回复
(
0
)