首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
admin
2020-04-30
26
问题
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵
(k为常数),且AB=O,求线性方程组Ax=0的通解.
选项
答案
由于AB=0,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. 对于k≠9,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Ax=0的一个基础解系,于是Ax=0的通解为 x=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. 对于k=9,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Ax=0的基础解系由一个向量构成.又因为[*],所以Ax=0的通解为x=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Ax=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Ax=0等价于ax
1
+bx
2
+cx
3
=0,不妨设a≠0,η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Ax=0的两个线性无关的解,故Ax=0的通解为 x=c
4
η
1
+c
5
η
2
,其中c
4
,c
5
为任意常数.
解析
本题考查抽象齐次线性方程组的求解问题.主要是将矩阵方程转化成线性方程组.并注意运用AB=O,则r(A)+r(B)≤n.未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.齐次线性方程组通解的结构,若Ax=0的系数矩阵A的秩r(A)=r,则通解x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
.
转载请注明原文地址:https://kaotiyun.com/show/Abv4777K
0
考研数学一
相关试题推荐
函数f(x,y)=arctan在点(0,1)处的梯度等于
(2008年试题,一)函数一在点(0,1)处的梯度等于().
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
一根长为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心坐标=_____.
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为_______.
设n是正整数,则=_____.
设f(x)为连续函数,I=tf(tx)dx,其中t>0,s>0,则I的值
设函数f(x,y)在(2,-2)处可微,满足f(sin(xy)+2cosx,xy-2cosy)=1+x2+y2+o(x2+y2),这里o(x2+y2)表示比x2+y2高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,-2,f(2,
求解二阶微分方程的初值问题
设随机变量X的概率密度为,x∈R,求下列问题:判断X,|X|是否独立.
随机试题
垄断厂商长期均衡的条件是()
[*]
炎性乳癌
女性,54天,黑粪40天伴贫血于10月13日入院。患儿是第1胎,足月顺产,因地震系在防震棚出生。生后14天始排黑粪,量不等,未见脐及皮肤等处出血,不发热。因贫血严重,多次输血及药物治疗均无效。粪便检查:有(56~76)×(36~40)mm虫卵,椭圆形。两
下列对“严格实行国有土地有偿使用制度”的叙述,正确的有()。
下列情形中,人民法院应当再审的有()。[2013年真题]
青海省有“草原门户”之称的是()。
试分析英语film用作名词时5项意义之间的派生关系:①皮肤薄膜;②眼睛里长出的异常薄膜(俗称眼翳);③薄薄的一层透明膜状物;④摄影用的胶卷;⑤电影。
TopmanagementrolesatmultinationalcorporationsinAsiaaretypicallyheldbyWesterners.ButnotjustanytypeofWesterner-
某公司分配给人事部的IP地址块为211.67.19.224/27,分配给培训部的IP地址块为211.67.19.208/28,分配给销售部的IP地址块为215.167.19.192/28,那么这3个地址块经过聚合后的地址为()。
最新回复
(
0
)