首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1,证明: f(k1x1+k2x2+k3x3+…+knxn)≤k1f(x1)+k2f(x2)+k3f(x
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1,证明: f(k1x1+k2x2+k3x3+…+knxn)≤k1f(x1)+k2f(x2)+k3f(x
admin
2021-11-25
73
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1,证明:
f(k
1
x
1
+k
2
x
2
+k
3
x
3
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+k
3
f(x
3
)+...+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
) 分别取x=x
i
(i=1,2,…n)得 [*] 将上述各式分别相加,得到f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+...+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+k
3
x
3
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+k
3
f(x
3
)+...+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/Ady4777K
0
考研数学二
相关试题推荐
函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,证明:(Ⅰ)存在c∈(0,1),使得f(c)==2。
设方程组有通解k1ξ1+k2ξ2=k1[1,2,1,一1]T+k2[0,一1,一3,2]T.方程组有通解λ1η1+λ2η2=λ1[2,一1,一6,1]T+λ2[一1,2,4,a+8]T.已知方程组有非零解,试确定参数a的值,并求该非零解.
设函数z=f(x,y)(xy≠0)满足f(xy,)=y2(x2-1),则dz=_______.
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;(A一B恒可逆。上述命题中,正确的个数为()
方程y’’一3y’+2y=ex+1+excos2x的特解形式为()
设f(x,y)在点(0,0)的某邻域内连续,且满足,则函数f(x,y)在点(0,0)处().
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T],k>0.欲在T时将数量为A的该商品销售完,试求:(1)t时的商品剩余量,并确定k的值;(2)在时间段[0,T]上的平均剩余量.
随机试题
切割速度正确与否,可以根据割缝的后拖量来判断。()
患儿,7岁,寒战高热、恶心呕吐,爆躁不安,查体,体温39.5℃,布氏征阳性,白细胞数目增多,腰椎穿刺检查有脑脊液。诊断为流行性脑脊髓膜炎。为避免该药物泌尿道损害,可采取的措施是
适用于皮肉浅薄部位腧穴的进针方法是
边远地区和交通不便地区的开户单位,其库存现金限额也只能在其3~5天的日常零星开支内核定。
客户应当向期货公司登记以本人名义开立的用于存取保证金的()账户。
根据刑事法律制度的规定,下列行为中,罪名认定正确的有()。
2,3,4,9,8,27,16,81,(),()。
肺心病时,下列哪一种病变最不容易见到
A、YoucantakeNo.6bus.B、Itisalongwaytogo.C、Youcangothere.A
Thissummer,studentdebtreachedarecord$1.5trillionintheUnitedStates.Toputthatinperspective,student-loanborrowe
最新回复
(
0
)