首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
admin
2018-08-03
54
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有3个线性无关的解向量.
答案
B
解析
由A
*
≠0知A
*
至少有一个元素A
ij
=(一1)
i+j
M
ij
≠0,故A的余子式M
ij
≠0,而M
ij
为A的n一1阶子式,故r(A)≥n一1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n一1.因此Ax=0的基础解系所含向量个数为n—r(A)=n一(n一1)=1,只有B正确.
转载请注明原文地址:https://kaotiyun.com/show/Bgg4777K
0
考研数学一
相关试题推荐
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1—2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
A,B,C三个随机事件必相互独立,如果它们满足条件
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
________是中国园林的精华与核心。
易与金属离子形成螯合物,可引起缺钙、贫血、缺锌等副作用的药物是
通过拆借双方当事人协定形成的同业拆借利率,相对于借助中介人经纪商、通过公平竞争确定的利率弹性较小。()
以债务转为资本的方式进行债务重组时,以下会计处理方法正确的有()。
货币资本流通公式和商品资本流通公式的区别有()。
一般来说,评价一位教师是否上好一节课的标准是()。
人们经常借助于外在的具体形式,如画图表、路线图等表征问题,使表征更加直观。这是()的过程。
间接正犯又称为间接实行犯,是指利用他人为道具而实施犯罪的实行行为,利用者通过支配被利用者的工具行为实现自己的犯罪意图,利用者与被利用者不构成共同犯罪,它包括以下两种情况:一是利用无刑事责任能力人犯罪;二是利用他人过失或不知情的行为犯罪。根据上述定义,下列
简述20世纪初资产阶级民主革命思想的主要内容。(武汉大学2001年中国近现代史真题)
一个关系模式为Y(X1,X2,X3,X4),假定该关系存在如下函数依赖;X1→X2,X1→X3,X3→X4,则该关系属于【】,因为它存在着【】。
最新回复
(
0
)