首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)在(2,—2)处可微,满足 f(sin(xy)+2cosx,xy-2cosy)=1+x2+y2+o(x2+y2), 这里o(x2+y2)表示比x2+y2高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2
设函数f(x,y)在(2,—2)处可微,满足 f(sin(xy)+2cosx,xy-2cosy)=1+x2+y2+o(x2+y2), 这里o(x2+y2)表示比x2+y2高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2
admin
2020-11-16
39
问题
设函数f(x,y)在(2,—2)处可微,满足
f(sin(xy)+2cosx,xy-2cosy)=1+x
2
+y
2
+o(x
2
+y
2
),
这里o(x
2
+y
2
)表示比x
2
+y
2
高阶的无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2,f(2,一2))处的切平面.
选项
答案
因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处连续, 取(x,y)=(0,0)得f(2,一2)=1. 因为f(x,y)在(2,一2)处可微,所以f(x,y)在(2,一2)处可偏导, 令y=0得f(2cosx,一2)=1+x
2
+o(x
2
), 则[*] 令x=0得f(2,一2cosy)=1+y
2
+o(y
2
), 则[*] 故曲面∑:z=f(x,y)在点(2,一2,1)处的法向量为n={1,一1,1},切平面方程为π:(x—2)一(y+2)+(z一1)=0,即π:x—y+z—5=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Biv4777K
0
考研数学一
相关试题推荐
[*]
设(X,Y)是二维连续型随机变量,下列各式都有意义,若X与Y独立,则下列式中必成立的个数为①E(XY)=EX•EY;②fX|Y(x|y)=fX(x);③P{X>x,Y>y}=1一FX(x)FY(y);④令Z=X+Y,则
曲线y=xln(1+)的渐近线的条数为
A、 B、 C、 D、 C
设.(Ⅰ)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=
设函数f(x)在闭区间[a,b]上连续,且f(x)>0,则方程=0在开区间(a,b)内的根有
[2007年]某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为().
在一次晚会上,有n(n≥3)对夫妻做一游戏,将男士与女士随机配对,则夫妻配成对的期望值为_______.
下列命题正确的是().
随机试题
A、Sellanddelivergoods.B、Cleantherooms.C、Helptrainemployees.D、Cookmealsforthestuff.A对话中,男士问女士经常在她父亲的购物中心工作吗,女士回答说她
将信号发给一个进程的UNIX命令是_______。
条件反射是建立在下列哪项基础上的()
心脾受损型阳痿的治法是劳伤心脾型遗精的治法是
按《建筑安装工程费用项目组成》建标[2003]206号文的规定,直接工程费中人工费包括生产工人( )的工资。
对某建筑高度为140m的住宅建筑进行防火检查,下列关于避难层的检查结果中,不符合现行国家消防技术标准的是()。
适用海关A类管理的加工贸易企业进口的78种客供辅料,且总价不超过()的,可以不设立银行保证金台账,甚至不申领《登记手册》。
下列关于证券公司分类监管的说法中,正确的有()。Ⅰ.分类监管制度是证券行业的一项基础性制度Ⅱ.中国证监会根据证券公司分类结果对不同类别的证券公司实施区别对待的监管政策Ⅲ.分类监管制度对证券公司发挥了正向激励作用Ⅳ.分类监管制度降
(2014年卷二第80题)赵某和程某合作创作了一部不可分割使用的小说。某出版社与赵某联系欲出版该小说,程某表示坚决反对,两人不能协商一致。根据著作权法及相关规定,下列哪些说法是正确的?
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.仔细阅读给定资料,按照后面提出的“申论要求”依次作答。二、给定资料1.中国政法大学教授何兵先生最近在媒体上发表《10年以后谁
最新回复
(
0
)