首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2020-03-16
56
问题
设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y—y=y
’
(X—x), 它与x轴的交点为(x一[*],0)。 由于y
’
(x)>0,y(0)=1,因此y(x)>1(x>0)。于是 S
1
=[*]。 又可得 s
2
=∫
0
x
y(t)dt。 根据题设2S
1
一S
2
=1,有 [*]一∫
0
x
y(t)dt=1。 并且y
’
(0)=1,两边对x求导并化简得 yy
’’
=(y
’
)
2
, 这是可降阶的二阶常微分方程,令p(y)=y
’
,则上述方程可化 [*]=p
2
, 分离变量得 [*] 从而有y=C
2
e
C
1
x
。 根据y
’
(0)=1,y(0)=1,可得C
1
=1,C
2
=1。 故所求曲线的方程为y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Bo84777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求实数a的值;
设二次f(x1,x2,x3)=xAx在正交变换x=Qy下的标准形为y1+y2,且Q的第三列为求A;
设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设f(x)在x=x0处可导,且f(x0)≠0,证明:
计算不定积分
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程;
函数y=lnx在区间[1,e]上的平均值为________.
随机试题
李某,男性,34岁。因脑部外伤诱发成疾,头晕健忘,时发头痛,常有一时性神志丧失,伴见四肢抽动,舌质暗,苔薄白,脉弦,中医辨证以下列哪项为主
张义幼年之时,生母死亡,埋葬在一块田地旁边。同族人张为放火烧荒,火苗把张义母亲的坟给烧毁了。张义的同胞姐姐暗中把这件事告诉了他,张义虽然年幼,但悲伤如同在守丧期间一样,长大后也不结婚。后来,他终于手持利刃,杀了张为,以为母亲尽孝,复了仇。依据《大清律例》及
公路工程对土工织物及相关产品的要求主要是()和加筋、防渗和防护作用。
设备工程成本控制的主体是()。
下列关于资源税税收优惠的表述,不正确的有()。
在生产中采用了节省劳动力的新技术后所造成的失业,称之为()。
下列有关诉讼时效的表述中,正确的是()。
下列说法中正确的是()。
PASSAGEONEGiveatitleforthepassage.
A、Ahoneymoonsuitefor$250forthenightandfreebreakfastofChinesestyle.B、Ahoneymoonsuitefor$225forthenightandf
最新回复
(
0
)