首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2020-03-16
90
问题
设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y—y=y
’
(X—x), 它与x轴的交点为(x一[*],0)。 由于y
’
(x)>0,y(0)=1,因此y(x)>1(x>0)。于是 S
1
=[*]。 又可得 s
2
=∫
0
x
y(t)dt。 根据题设2S
1
一S
2
=1,有 [*]一∫
0
x
y(t)dt=1。 并且y
’
(0)=1,两边对x求导并化简得 yy
’’
=(y
’
)
2
, 这是可降阶的二阶常微分方程,令p(y)=y
’
,则上述方程可化 [*]=p
2
, 分离变量得 [*] 从而有y=C
2
e
C
1
x
。 根据y
’
(0)=1,y(0)=1,可得C
1
=1,C
2
=1。 故所求曲线的方程为y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Bo84777K
0
考研数学二
相关试题推荐
设(2E—C—1B)AT=C—1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求矩阵A。
求微分方程的通解.
证明下列不等式:
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20%,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
求下列不定积分:
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及f(x)dx.
随机试题
简述股权取得日购买法和权益结合法的区别。
患者,男,60岁。糖尿病病史10年,检查:双下肢浮肿,尿蛋白(+++),空腹血糖8.0mmol/L,餐后2小时血糖11.13mmol/L,血压160/100mmHg。其诊断是
化生“天癸”的物质基础是
【案情】孙某与钱某合伙经营一家五金店,后因经营理念不合,孙某唆使赵龙、赵虎兄弟寻衅将钱某打伤,钱某花费医疗费2万元,营养费3000元,交通费2000元。钱某委托李律师向甲县法院起诉赵家兄弟,要求其赔偿经济损失2.5万元,精神损失5000元,并提供
小砌块砌体施工时对砂浆饱满度的要求严于砖砌体的要求。()
【背景资料】某新建办公楼工程,建筑面积48000m2,地下2层,地上6层,中庭高度为9m,钢筋混凝土框架结构。经公开招标投标,总承包单位以31922.13万元中标,其中暂定金额1000万元。双方依据《建设工程合同(示范文本)》(GF一
规范化服务的标准是()。
2015年1~4季度该市人均消费支出八大类中,同比增长的大类占人均消费总支出的比重比同比下降的大类()个百分点。
Youaregoingtoreadalistofheadingsandatextaboutwhatparentsaresupposedtodotoguidetheirchildrenintoadulthood
(46)Ifyouconsultcomparativeglobaleconomicandsocialstatistics,itisnotdifficulttopaintableakpictureofArabfailu
最新回复
(
0
)