首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2018-11-21
76
问题
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
一∫
0
1
sdF(s)=F(1)一∫
0
1
sf(s)ds=0一0=0, 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(C)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Bpg4777K
0
考研数学一
相关试题推荐
设A为m×s矩阵,B为s×n矩阵,使ABX=0与BX=0为同解方程组的充分条件是().
设f(0)=g(0),f′(0)=g′(0),f″(x)<g″(x)(当x>0时),证明当x>0时,f(x)<g(x).
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设f(x)在[a,b]上有二阶连续导数,证明
已知方程组有解,证明:方程组无解。
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f"(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
随机试题
腹泻患儿出现中度酸中毒,CO2CP应是()
A.纯运动性轻偏瘫B.纯感觉性卒中C.共济失调性轻偏瘫D.构音障碍一手笨拙综合征E.感觉运动型卒中患者对侧偏身感觉障碍,多为主观感觉体验,亦有感觉缺失的是
关于施工进度计划安排的说法,错误的是()。
甲公司按单项存货计提存货跌价准备。20×2年年初企业存货中包含甲产品1800件,单位实际成本为0.3万元,已计提的存货跌价准备为45万元。20×2年该公司未发生任何与甲产品有关的进货,甲产品当期售出600件。20×2年12月31日,该公司对甲产品进行检查时
义务教育的基本特征主要包括()。①强制性②普遍性③公共性④选择性⑤终身性
【2015江西】教师对教学工作采取冷漠的态度,在自身与工作对象间保持距离,这是教师职业倦怠的()特征。
下列句子中没有语病的一句是()。
中国共产党第十八次全国代表大会,是在我国进入()小康社会决定性阶段召开的一次十分重要的大会。
蒙台梭利把0~6岁称为“精神胚胎期”,认为这段时间是人的敏感期——距离自己天性最近的时刻。但“精神胚胎期”只是对童年蕴藏着巨大力量和可能性的模糊认识。即便是这个最著名的儿童心理研究者,也承认对童年可能孕育的幸福和罪恶所知甚少。因此,当满怀爱意但缺乏耐心和观
Insomniacs(someonewhocannotsleepeasily)don’tjustsufferatnight.Duringtheday,theyoftenfeelsleepy,havetroubleco
最新回复
(
0
)