首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
admin
2019-07-17
37
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为______。
选项
答案
1
解析
根据题设条件,得
A(α
1
,α
2
)=(Aα
1
,Aα
2
)=(α
1
,α
2
)
。
记P=(α
1
,α
2
),因α
1
,α
2
线性无关,故P=(α
1
,α
2
)是可逆矩阵。由
,可得P
—1
AP=
。记B=
,则A与B相似,从而有相同的特征值。
因为 |λE—B|=
=λ(λ—1),
所以A的非零特征值为1。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/C1N4777K
0
考研数学二
相关试题推荐
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=______.
设f(χ)=是连续函数,求a,b.
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)有且仅有一个根.
证明:
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
下列广义积分收敛的是[].
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设有平面闭区域,D={(x,y)|—a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
求如dy,其中D是由L:(0≤t≤2π)与χ轴围成的区域.
二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2+2x1x3+2x2x3的正惯性指数为2,a应满足?
随机试题
PASSAGEONEWhatbandheldadominantpositionintheUK’spopmusicbeforethesuccessofWestlife?
Littre疝是指嵌顿的疝内容物是Richter疝是指嵌顿的疝内容物是
频发、偶发噪声的评价量为()。
对项目可行性研究报告后评价的重点是项目的()是否明确合理。
打桩的顺序,以下说法不正确的是()。
企业应当结合自身业务特点和风险管理要求,将取得的金融资产在初始确认时分为以下儿类()。
上图中“X”的值约为()。2000年,我国的全社会固定资产投资为()。
2019年11月14日,习近平主席在金砖国家领导人巴西利亚会晤公开会议上的讲活中指出,要谋求开放创新的发展前景。当前,经济全球化遭遇挫折,一定程度反映出现行全球治理体系的缺陷。对此,习近平主席提出了相关建议。下列不属于习近平主席提出的建议是(
权利保障原则的内容包括
材料1今天,我们也生活在一个矛盾的世界之中。一方面,物质财富不断积累,科技进步日新月异,人类文明发展到历史最高水平。另一方面,地区冲突频繁发生,恐怖主义、难民潮等全球性挑战此起彼伏,贫困、失业、收入差距拉大,世界面临的不确定性上升。对此
最新回复
(
0
)