首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( ).
已知β1,β2是非齐次线性方程组Ax=b的两个不同解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( ).
admin
2020-06-05
84
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同解,α
1
,α
2
是对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解是( ).
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+
B、k
1
α
1
+k
2
(α
1
-α
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(β
1
-β
2
)+
答案
B
解析
对于选项(A),(C),因为
所以(A),(C)中无非齐次线性方程组Ax=b的特解,故均不正确.
对于选项(D),虽然(β
2
-β
1
)是齐次线性方程组Ax=0的解,但它与α
1
不一定线性无关,故(D)也不正确,从而选(B).
事实上,对于(B),由于α
1
,(α
1
-α
2
)与α
1
,α
2
等价(显然它们能够互相线性表示),故α
1
,
(α
1
-α
2
)也是齐次线性方程组的一组基础解系,而由
可知
是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,(B)正确.
转载请注明原文地址:https://kaotiyun.com/show/C8v4777K
0
考研数学一
相关试题推荐
设n阶(n≥3)矩阵若矩阵A的秩为n-1,则a必为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,则下列命题①若Ax=0的解均是Bx=0的解,则秩r(A)≥r(B)②若秩r(A)≥r(B),则Ax=0的解均是Bx=0的解③若Ax=0与Bx=0同解,则秩r(A)=r(B)④若秩r(A
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
设f(x)和g(x)在[a,b]上连续,试证至少有一点c∈(a,b),使f(c)g(x)dx=g(c)f(x)dx.
设函数f(χ)在[a,b]上连续,在(a,b)内可导且f(a)≠f(b),试证明存在η,ξ∈(a,b),使得
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
随机试题
题38图为8255A用作开关量输入和开关量输出接口的电路,该电路的有效工作时间约为10小时。电路工作时,每隔5分钟检测一次开关K的状态,若K断开,灯L0点亮,L1熄灭;若K闭合,灯L1点亮,L0熄灭。设8255A端口地址为80H~83H,请填空将程序补
现时成本收益是按企业的___和成本费用的___配比收支计算的收益。()
行吟泽畔,颜色憔悴。(《渔父》)颜色:
新生儿窒息的紧急治疗措施中,首选的是
宫颈癌Ia期:CINⅡ:
国家对医疗器械实行分类管理,属于第二类医疗器械特点的是
()是通过相互沟通、调整、联合等方法,使项目涉及的各方配合得当、协同一致,以便顺利实现项目目标。
与乙炔长期接触的部件,其材质含铜量应为不高于()的铜合金。
无形财产是一类重要的经济法律关系客体,它可以适用于生产,转化为生产力。但是,()不属于无形财产。
简述学生智力发展差异的主要表现。
最新回复
(
0
)