首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)
admin
2019-02-26
104
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
。
(Ⅰ)求方程组(1)的一个基础解系;
(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
(Ⅰ)对方程组(1)的系数矩阵作初等行变换,有 [*] 则n-r(A)=4-2=2,基础解系由两个线性无关的解向量构成。取x
3
,x
4
为自由变量,得 β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系。 (Ⅱ)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠-1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零 解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=-1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/CG04777K
0
考研数学一
相关试题推荐
设(I)当a,b为何值时,β不可由α1,α2,α3线性表示;(Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设f(x)是以2π为周期的函数,当x∈[一π,π]时,f(x)=f(x)的傅里叶级数的和函数为S(x),则
椭球面∑1是椭圆L:绕x轴旋转而成,圆锥面∑2是由过点(4,0)且与椭圆L:相切的直线绕x轴旋转而成.(I)求∑1及∑2的方程;(Ⅱ)求位于∑1及∑2之间的立体体积.
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0
若正项级数().
(Ⅰ)在一个n阶行列式D中等于“0”的元素个数大于n2-n,则D=_______。(Ⅱ)D==_______。
三阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A。
(2001年)设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130厘米的雪堆全部融化需多少小时?
(2013年)已知极限其中k,c为常数,且c≠0,则()
随机试题
肋骨骨折的病因有
关于感染性心内膜炎,下列哪项正确
下列哪项不是慢性盆腔炎的临床表现
对工程网络计划进行优化的目的是()。
短期借款应按()设置明细账。
娱乐场所应当建立巡查制度,发现娱乐场所内有毒品违法犯罪活动的,应当立即向()报告。
论述法与市场经济的关系。
下列关于模板形参的表述中,错误的是
Herfatherwasaquietmanwithgracefulmanners.
______richorpoor,Iwillmarryhimallthesame.
最新回复
(
0
)