首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
admin
2015-12-03
51
问题
设f(x
1
,x
2
,x
3
)=x
2
Ax=x
1
2
+ax
2
2
+x
3
2
+4x
1
x
2
+4x
1
x
3
+2bx
2
x
3
,ξ=(1,1,1)
T
是A的特征向量,求正交变换化二次型为标准形,并求当x满足x
2
x=x
1
2
+x
2
2
+x
3
2
=1时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
由已知可得二次型矩阵为[*],设ξ=(1,1,1)
T
所对应的特征值为λ,则由特征值与特征向量的定义有[*],解得a=1,b=2,λ=5。故 [*] 得矩阵A的特征值为λ
1
=5,λ
2
=λ
3
=一1,对应的特征向量分别为 ξ
1
=(1,1,1)
T
,ξ
2
=(0,一1,1)
T
,ξ
3
=(一2,1,1)
T
,单位化之后构造正交矩阵,得 [*] 令x=Qy,则f(x
1
,x
2
,x
3
)=x
T
Ax=5y
1
2
—y
2
2
—y
3
2
。 因为x
T
x=(Qy)
T
Qy=y
T
(Q
T
Q)y=y
T
y=y
1
2
—y
2
2
—y
3
2
=1,所以f(x
1
,x
2
,x
3
)=5y
1
2
—y
2
2
—y
3
2
=6y
1
2
一1,注意到y
1
2
=1一(y
2
2
+y
3
2
)≤1,故f(x
1
,x
2
,x
3
)≤5, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CHw4777K
0
考研数学一
相关试题推荐
若A是n阶正定矩阵,证明A-1,A*也是正定矩阵.
设(X,Y)服从G={(x,y)|0≤x≤2,0≤y≤1}上的均匀分布,求:(X,Y)的密度函数及分布函数;
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
证明cosnxdx=0.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
就a的不同取值情况,确定方程lnχ=χa(a>0)实根的个数.
设向量组α1,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设f(x)=,则x2项的系数为________.
证明:∫0(2n-1)πxf(|sinx|)dx=(2n-1)π/2∫0(2n-1)πf(|sinx|)dx(n为正整数)。
设A=,而n≥2为正整数,则An2An-1=_________.
随机试题
《雷雨》是一出()
如下_______成立,必使p∧q∧r为假。()
一种与生活愿望相结合并指向于未来的想象是( )。
下列穴位中,可治疗瘾疹、湿疹、丹毒等血热性皮外科病的穴位是
关于两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用下列哪项指标
按现行制度,现金日记账和银行存款日记账必须采用订本式账簿。()
培养德、智、体全面发展的社会主义事业的建设者和接班人的根本途径是()。
在教学中最常用的方法是
中断是CPU与外部设备数据交换的重要方式。CPU响应中断时必须具备3个条件,分别为外部提出中断请求,本中断未屏蔽,(4)。CPU响应中断后,必须由(5)提供地址信息,引导程序进入中断服务子程序;中断服务程序的入口地址存放在(6)中。
在VisualFoxPro中,"表"通常是指
最新回复
(
0
)