首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
admin
2015-12-03
76
问题
设f(x
1
,x
2
,x
3
)=x
2
Ax=x
1
2
+ax
2
2
+x
3
2
+4x
1
x
2
+4x
1
x
3
+2bx
2
x
3
,ξ=(1,1,1)
T
是A的特征向量,求正交变换化二次型为标准形,并求当x满足x
2
x=x
1
2
+x
2
2
+x
3
2
=1时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
由已知可得二次型矩阵为[*],设ξ=(1,1,1)
T
所对应的特征值为λ,则由特征值与特征向量的定义有[*],解得a=1,b=2,λ=5。故 [*] 得矩阵A的特征值为λ
1
=5,λ
2
=λ
3
=一1,对应的特征向量分别为 ξ
1
=(1,1,1)
T
,ξ
2
=(0,一1,1)
T
,ξ
3
=(一2,1,1)
T
,单位化之后构造正交矩阵,得 [*] 令x=Qy,则f(x
1
,x
2
,x
3
)=x
T
Ax=5y
1
2
—y
2
2
—y
3
2
。 因为x
T
x=(Qy)
T
Qy=y
T
(Q
T
Q)y=y
T
y=y
1
2
—y
2
2
—y
3
2
=1,所以f(x
1
,x
2
,x
3
)=5y
1
2
—y
2
2
—y
3
2
=6y
1
2
一1,注意到y
1
2
=1一(y
2
2
+y
3
2
)≤1,故f(x
1
,x
2
,x
3
)≤5, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CHw4777K
0
考研数学一
相关试题推荐
求.
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位矩阵.计算行列式|A一3E的值.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)}出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程.
量组α1,α2,…,αm线性无关的充分必要条件是().
计算定积分.
设函数y=f(x)由参数方程(0<t≤1)确定证明:y=f(x)在[1,﹢∞)上单调增加
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
已知△ABC的顶点坐标为A(1,2,1),B(1,0,1),C(0,1,z),则当z=___________时,△ABC的面积最小.
随机试题
哪项是急性肾炎和泌尿系感染的共同点
脑外伤的临床处理不包括
下列关于肾病综合征的描述哪项不正确
多服、久服易导致肝功能损害的中药是()
关于石墨炉原子化器的特点,下列说法正确的是()。
矩阵式项目管理组织形式介于()之间。
下列法律中,属于民法商法的是()。
从进行薪酬调查的主体来看,薪酬调查可以分为()。
行政赔偿的主体是实施侵害行为的行政机关。()
Culturalrulesdetermineeveryaspectoffoodconsumption.Whoeatstogetherdefinessocialunits.Forexample,insomesocietie
最新回复
(
0
)