首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y〞-7y′+12y=χ满足初始条件的特解; (Ⅱ)y〞+a2y=8cosbχ的通解,其中a>0,b>0为常数; (Ⅲ)y″′+y〞+y′+y=0的通解.
解下列微分方程: (Ⅰ)y〞-7y′+12y=χ满足初始条件的特解; (Ⅱ)y〞+a2y=8cosbχ的通解,其中a>0,b>0为常数; (Ⅲ)y″′+y〞+y′+y=0的通解.
admin
2021-11-09
88
问题
解下列微分方程:
(Ⅰ)y〞-7y′+12y=χ满足初始条件
的特解;
(Ⅱ)y〞+a
2
y=8cosbχ的通解,其中a>0,b>0为常数;
(Ⅲ)y″′+y〞+y′+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为[*] 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(χ)=Aχ+B.代入方程,可得A=[*],B=[*],所以,原方程的通解为y(χ)=[*] 代入初始条件,则得[*] 因此所求的特解为y(χ)=[*] (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*](χ)=C
1
cosaχ+C
2
sinaχ.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbχ+Bsinbχ,将其代入原方程,则得 A=[*],B=0. 所以,通解为y(χ)=[*]cosbχ+C
1
cosaχ+C
2
sinaχ,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Aχcosaχ+Bχsinaχ,代入原方程,则得 A=0.B=[*]. 原方程的通解为y(χ)=[*]χsinaχ+C
1
cosaχ+C
2
sinaχ,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(χ)=C
1
e
-χ
+C
2
cosχ+C
3
sinχ,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CSy4777K
0
考研数学二
相关试题推荐
极限=.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
过点P(1,0)作曲线的切线,求:该平面图形绕x轴旋转一周所成旋转体体积;
设存在,则常数k=.
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
就k的不同取值情况,确定方程x3-3x+k=0的根的个数。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
随机试题
江春不肯留归客,________。
孕后头晕目眩;腰膝酸软,舌暗红,少苔,脉细弦滑。抬法
A.病理性醉酒B.慢性酒精中毒C.酒精滥用D.酒精依赖E.戒断综合征
患者,女,32岁。重度主动脉狭窄,拟行心内直视手术。术前1天突感左心前区疼痛,伴冷汗、恶心。此时针对性处理措施错误的是
砌体房屋设置构造柱的主要作用是与圈梁共同形成空间骨架,以增加房屋的(),提高墙体()的能力。
当短路点发生在靠近中性点接地的变压器时,单相短路电流可能大于三相短路电流。()
下列属于复合材料的是()。
下列关于2009年各省市校均招生人数的描述,正确的是()。
Readthefollowingarticlefromabookandanswerquestions19-25.Forquestions19-25,choosethecorrectanswerA,B,Cor
【M1】Mostpeoplewoulddescribewaterlikeacolorlessliquid.【M2】Theywouldknowthatinverycoldconditionsitbecomesasolid
最新回复
(
0
)