首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y〞-7y′+12y=χ满足初始条件的特解; (Ⅱ)y〞+a2y=8cosbχ的通解,其中a>0,b>0为常数; (Ⅲ)y″′+y〞+y′+y=0的通解.
解下列微分方程: (Ⅰ)y〞-7y′+12y=χ满足初始条件的特解; (Ⅱ)y〞+a2y=8cosbχ的通解,其中a>0,b>0为常数; (Ⅲ)y″′+y〞+y′+y=0的通解.
admin
2021-11-09
92
问题
解下列微分方程:
(Ⅰ)y〞-7y′+12y=χ满足初始条件
的特解;
(Ⅱ)y〞+a
2
y=8cosbχ的通解,其中a>0,b>0为常数;
(Ⅲ)y″′+y〞+y′+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为[*] 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(χ)=Aχ+B.代入方程,可得A=[*],B=[*],所以,原方程的通解为y(χ)=[*] 代入初始条件,则得[*] 因此所求的特解为y(χ)=[*] (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*](χ)=C
1
cosaχ+C
2
sinaχ.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbχ+Bsinbχ,将其代入原方程,则得 A=[*],B=0. 所以,通解为y(χ)=[*]cosbχ+C
1
cosaχ+C
2
sinaχ,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Aχcosaχ+Bχsinaχ,代入原方程,则得 A=0.B=[*]. 原方程的通解为y(χ)=[*]χsinaχ+C
1
cosaχ+C
2
sinaχ,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(χ)=C
1
e
-χ
+C
2
cosχ+C
3
sinχ,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CSy4777K
0
考研数学二
相关试题推荐
已知,且f(0)=g(0)=0,试求
设D为由y=x3,x=-l,y=1所围成的闭区域,则=.
设函数y=y(x)由方程2xy=x+y所确定,则.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且g(x)≠0,(x∈[a,b]),g"(x)≠0,(a﹤x﹤b),证明:存在ε∈(a,b),使得.
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=________.
已知,求a,b的值。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
随机试题
出版物生产成本中的直接成本包括()等项目。
A.弥散障碍B.第一秒用力呼气率降低C.两者均有D.两者均无支气管哮喘
当设计无具体要求时,对一、二级抗震等级的框架结构,其纵向受力钢筋检测所得的强度实测值应符合“钢筋抗拉强度实测值与屈服强度实测值的比值不应大于1.25,屈服强度实测值与强度标准值的比值不应小于1.3”的规定。()
按照住房城乡建设部、财政部《关于印发的通知》(建标[2013]44号)的规定,对建筑以及材料、构件和建筑安装物进行一般鉴定、检查所发生的费用,应在()中列支。
商业银行申请开展个人理财业务,应当向中国银监会报送的材料包括()。
(2017年)增值税一般纳税企业以支付现金方式取得联营企业股权的,所支付的与该股权投资直接相关的费用应计入当期损益。()
土地增值税纳税人是法人的,当转让的房地产坐落地与其机构所在地或经营所在地一致时,在办理税务登记的原管辖税务机关申报纳税即可。()
关于“重证据,重调查研究,严禁逼供信”的政策,下列说法错误的是()。
(厦门大学2011年初试真题)根据个人所得税法的规定,下列是个人所得税纳税人的有()。
下列变量名中,合法的()。A)B)C)D)
最新回复
(
0
)