首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a) =g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
(95年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a) =g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使
admin
2017-04-20
100
问题
(95年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)
=g(b)=0,试证:
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(1)反证法.若[*]∈(a,b),使g(c)=0,则由罗尔定理知[*]∈(a,c),ξ
1
∈(c,b),使g’(ξ
1
)=g’(ξ
2
)=0,从而[*]∈(ξ
1
,ξ
2
).使g"(ξ)=0,这与题设g"(x)≠0矛盾. (2)令φ(x)=f(x)g’(x)一f’(x)g(x) 由f(a)=f(b)=g(a)=g(b)=0知,φ(a)=φ(b)=0,由罗尔定理知[*]∈(a,b),使φ’(ξ)=0,即 f
解析
转载请注明原文地址:https://kaotiyun.com/show/Cru4777K
0
考研数学一
相关试题推荐
用凑微分法求下列不定积分:
[*]
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处在曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在(1,1)处在切线与x轴平行.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)所满足的一阶微分方程;
判断下列结论是否正确,并证明你的判断.(I)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则使得当0<|x-a|<δ时有界•
随机试题
引起产褥感染的外源性感染最常见病原菌是
肺癌术后24小时内最常见的并发症是
王某为其子王强(现年15岁)投了人身保险,至今已缴纳保险费满3年,受益人为其妻刘某和其母赵氏。以下说法正确的是:()
建筑信息建模(BIM)技术的基本特点有()。
新课程整体设置九年一贯的义务教育课程,在义务教育阶段小学()。
金融监管的三道防线不包括()。
(2018年真题)根据现行宪法和法律,下列关于全国人大专门委员会的表述,正确的有()。
IndependentWritingDirectionsForthistask,youwillwriteanessayinresponsetoaquestionthatasksyoutostate,expl
Thestatesmanandwriteryoutalkedwithlastmonth________attoday’sconference.
PossiblynoothermanhasinfluencedtheinstitutionsofgovernmentintheUnitedStatesasmuchasThomasJefferson.Hewasthe
最新回复
(
0
)