首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
admin
2018-11-22
48
问题
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有
|f(x)—f(y)|≤M|x—y|
k
.
(1)证明:当k>0时,f(x)在[a,b]上连续;
(2)证明:当|k|>1时,f(x)=常数.
选项
答案
(1)对任意的x
0
∈[a,b],由已知条件得 0≤|f(x)一f(x
0
)|≤M|x—x
0
|
k
,[*]=f(x
0
), 再由x
0
的任意性得f(x)在[a,b]上连续. (2)对任意的x
0
∈[a,b],因为k>1, 所以0≤[*]≤M|x—x
0
|
k—1
,由夹逼定理得f’(x
0
)=0,因为x
0
是任意一点,所以f’(x)≡0,故f(x)≡常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CsM4777K
0
考研数学一
相关试题推荐
已知向量a,b的模分别为|a|=2,|b|=,且a.b=2,则|a×b|=()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论。
设A=,A*是A的伴随矩阵,则A*x=0的通解是________。
下列选项中矩阵A和B相似的是()
设f(x)是连续函数。(Ⅰ)利用定义证明函数F(x)=可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=也是以2为周期的周期函数。
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=,k=0,1。试求:Cov(X0,X1)。
设随机变量X与Y相互独立,若X与Y分别服从X—~b(2,1/2),Y~b(3,1/2),则P{X+Y≥1}=_______。
飞机以匀速u沿y轴正向飞行,当飞行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2u.(Ⅰ)求导弹运行轨迹满足的微分方程及初始条件;(Ⅱ)求导弹的运行轨迹方
设a为常数,讨论方程ex=ax2的实根个数.
设数列{an),{bn}满足收敛.证明:
随机试题
阅读下列案例,并回答问题。年轻的黄老师每次教完生字后,总是让学生回去把每个生字抄10遍,准备第二天听写,但学生的生字听写成绩总是不理想。黄老师想,肯定是抄写不够,又让学生每个生字抄20遍甚至30遍,但学生的听写成绩仍没有明显提高。黄老师逐渐意识到,学生学习
下列哪项属于子宫内膜的周期性变化
可确诊慢性淋巴细胞白血病的方法是
(抗高血压药物)A、缬沙坦B、吲达帕胺C、美托洛尔D、尼卡地平E、赖诺普利属于血管紧张素转换酶抑制剂的是
2014年下半年,实行标准工时制的甲公司在劳动用工方面发生下列事实:(1)9月5日已累计工作6年且本年度从未请假的杨某向公司提出年休假申请。(2)因工作需要,公司安排范某在国庆期间加班4天,其中占用法定休假日3天,占用周末休息日1天。范某日工资为200
在小学教学评价中,衡量学校办学水平的关键指标是()。
货币制度(浙江财经大学2012真题;东南大学2012真题;华南理工大学2011真题)
Ifyouweretoexaminethebirthcertificatesofeverysoccerplayerin2006’sWorldCuptournament,youwouldmostlikelyfind
Readfivestudents’talksabouttravelingaroundEuropeusinganInter-Railticket.Theticketallowspeopleundertheageoft
Thefactthattheworld’scitiesaregettingmoreandmorecrowdedisawell-documenteddemographicfact.CitiessuchasTokyo
最新回复
(
0
)