首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且 {[f(x,y)-xy]/(x2+y2)2}=1, ① 则( ).
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且 {[f(x,y)-xy]/(x2+y2)2}=1, ① 则( ).
admin
2019-05-06
26
问题
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且
{[f(x,y)-xy]/(x
2
+y
2
)
2
}=1, ①
则( ).
选项
A、点(0,0)不是f(x,y)的极值点
B、点(0,0)是f(x,y)的极大值点
C、点(0,0)是f(x,y)的极小值点
D、根据所给条件无法判别点(0,0)是否为f(x,y)的极值点
答案
A
解析
由极限与无穷小的关系知,在点(0,0)充分小的邻域内有
即 f(x,y)=xy+(1+α)(x
2
+y
2
)
2
, ③
其中
.又由式①及
(x
2
+y
2
)=0得到
即
于是f(x,y)-xy=(1+α)(x
2
+y
2
)
2
, 即 f(x,y)=xy+(x
2
+y
2
)
2
+α(x
2
+y
2
)
2
,
亦即 f(x,y)=f(x,y)=f(0,0)=xy+(x
2
+y
2
)
2
+o((x
2
+y
2
)
2
)
=xy+(x
2
+x
2
)
2
+o(r
2
) (r=x
2
+y
2
→0).
当y=x时,f(x,y)—f(0,0)=x
2
+(x
2
+y
2
)
2
+o(r
2
)>0 (0<r<σ).
当y=一x时,f(x,y)一f(0,0)=一x
2
+(x
2
+x
2
)
2
+o(r
2
)<0 (0<r<σ),其中σ是充分小的正数.可知,(0,0)不是f(x,y)的极值点.仅A入选.[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Ct04777K
0
考研数学一
相关试题推荐
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设幂级数an(x-2)n在x=6处条件收敛,则幂级数(x-2)2n的收敛半径为().
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).问X,|X|是否相互独立?
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设事件A,C独立,B,C也独立,且A,B不相容,则().
设Γ:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x’2(t)+y’2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈Γ是函数f(x,y)在Γ上的极值点,证明:f(x,y)在点P0沿Γ
证明:若n2an=k>0,则级数an收敛
(2010年)极限
随机试题
Thoughsomepeoplehavesuggestedthatwomenshouldreturntohouseworkinordertoleave【C1】______jobsformen,theideahasbe
A.脓血痰B.铁锈色痰C.粉红色泡沫样痰D.砖红色胶冻样痰E.脓臭痰金黄色葡萄球菌肺炎,痰的性状为
残疾的二级预防是指
国务院期货监督管理机构依法履行职责时可以采取的措施有()。Ⅰ.对期货交易所进行现场检查Ⅱ.进人涉嫌违法行为发生场所调查取证Ⅲ.查阅、复制与被调查事件有关的财产权登记等资料Ⅳ.永久限制被调查事件当事人的期货交易
组织设计的主体工作是()。
教育目的的作用主要有哪些?
组成计算机指令的两部分是________。
Theroomwasfurnishedwiththesimplestessentials,abed,achair,andatable.
Whatdidthemanbuy?
Fossilrecordsindicate________existinginthepasthavebecomeextinct.
最新回复
(
0
)