首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2017-08-28
30
问题
设向量组B:b
1
…,b
r
能由向量组A:a
1
,…a
s
线性表示为
(b
1
…b
r
)=(a
1
…,a
s
)K,
其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性: 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r. 又因为K为r×s阶矩阵,则有r(K)≤rain{r,s}. 且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r. 综上所述 r≤r(K)≤r,即r(K)=r. 充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*], 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=r[*]=r(K), 即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/D2r4777K
0
考研数学一
相关试题推荐
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是()
设f(x)在(0,+∞)内可导,下述论断正确的是()
(2001年试题,一)设矩阵A满足A2+A一4E=0,其中E为单位矩阵,则(A—E)-1=_____________.
[-1/2,1/2)
A、 B、 C、 D、 C
(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中,写出此方程组的通解.
(2001年试题,九)设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1α1+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
随机试题
公民、法人或者其他组织对行政机关作出的行政处罚,有权申诉或者检举;行政机关应当认真审查,发现行政处罚有错误的,应当主动改正。()
A沙喹那韦B链霉素CTMPD氧氟沙星E酮康唑磺胺增效剂是
公司公积金的来源有()。
在下列股利分配政策中,能保持股利与利润之间一定的比例关系,并体现风险投资与风险收益对等原则的是()。
对于识别出的超出正常经营过程的重大关联方交易,注册会计师应当()。
意志的品质是什么?如何培养?
当下,我们的商界精英必须清醒地意识到,企业固然要顾及股东的利益.尽可能实现股东利益的最大化,但是获得社会资源进行生产的同时,也就承担了社会各方面利益相关者的责任。能否充分考虑这些利益相关者的利益,也日益成为评价企业业绩和企业伦理的重要尺度。对这段文字概括最
下列不属于二次文献特点的是()。
Alandfreefromdestruction,pluswealth,naturalresources,andlaborsupply...allthesewereimportant【C1】______inhelpingEn
Salesmendependupontheperson-to-personapproachintryingtopersuadeconsumerstobuy.Advertising,however,hastodependu
最新回复
(
0
)