首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
admin
2017-09-07
51
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足zf’’(x)+3x[f’(x)]
2
=1-e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
n()
(x)在点x
0
=-(n+1)处取得极小值.
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=f’(ξ)(x-a),则
由f’’(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f’’(x
0
)>0,于是由f’(x
0
)=0与f’’(x
0
)>0得f(x)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’-2yy’+xy’+y-x=0, ①
再求导,得
(3y
2
-2y+z)y’’+(6y-2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点
x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y’’|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/DRr4777K
0
考研数学一
相关试题推荐
质量为M,长为l的均匀杆AB吸引着质量为m的质点C,C位于AB的延长线上并与近端距离为a,已求得杆对质点C的引力F=,其中k为引力常数,现将质点C在杆的延长线上从距离近端r0处移至无穷远时,则引力作的功为_______.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅱ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
设二次型xTAx=+++2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中B=(Ⅰ)用正交变换化二次型xTAx为标准形,并写出所用正交变换;(Ⅱ)求(A-3E)6.
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是().
设f(x)连续,其中V={(x,y,z)|x2+y2≤t2,0≤z≤h}(t>0),求其中,[x]表示不超过x的最大整数.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
当x→0时,下列四个无穷小中,哪一个是比其他三个高阶的无穷小()
设A=(I)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
背景:某装饰公司作为分包商施工某办公大楼的装饰装修工程,由于总承包单位的外用电梯急于退场,经监理工程师及总承包单位同意,在办公楼六层抢先砌筑完毕一间大会议室后将其设置为临时材料库房,提前将部分装饰装修材料倒运至临时库房内存放。同一一楼层其他部位此
某患者,缺失,可摘局部义齿修复。义齿戴用1周,复诊时发现右侧上颌结节颊侧黏膜反折处有小溃疡。处理办法为
既能祛里寒,又能散风寒的药物是
检验检疫机构要求代理报检单位在每年( )前向所在地的检验检疫机构申请年度考核。
甲于3月1日向乙发出一要约,后反悔欲撤回,遂于3月3日发出撤回通知。要约于3月5日至乙处,但乙外出未能拆阅。撤回通知于3月6日到达乙处,乙于3月7日返回家中。则此要约()。
习近平总书记指出,开展党的群众路线教育实践活动的主要内容是()。
“蓬生麻中,不扶自直;白沙在涅,与之俱黑。”这句话反映了()对人的身心发展的影响。
Theideathatpeoplemightbechosenorrejectedforjobsonthebasisoftheirgenesdisturbsmany.Such【C1】______mayhowever,
设有某商业单位需要建立商务数据库用以处理销售记账,它记录的数据包括:顾客姓名,所在单位及电话号码;商品名称,型号,产地及单价;某顾客购买某商品的数量及日期。假定无同名顾客,无同型号商品,电话公用,顾客可在不同日期买同一商品。请画出该单位的商务ER图模型
在窗体上添加一个按钮,名为Command1,然后编写如下的事件过程,输出结果为PrinvateSubComandl_Click() Fori=1To4 x=4 Forj=1To3
最新回复
(
0
)