首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
admin
2018-12-29
45
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
选项
答案
构造辅助函数F(x)=f(x)—g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 f(x
1
)=M=[*],g(x
2
)=M=[*]。 若x
1
=x
2
,令C=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)—g(x
1
)≥0,F(x
2
)=f(x
2
)—g(x
2
)≤0,从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f′(ξ
1
)=f′(ξ
2
)=0, 再对f′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使f″(ξ)=0,即 f″(ξ)=g″(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/DUM4777K
0
考研数学一
相关试题推荐
(90年)求
(96年)设一平面经过原点及(6,一3,2),且与平面4x一y+2z=8垂直,则此平面方程为________。
(91年)已知两条直线的方程是则过L1且平行于L2的平面方程是_______.
设f(x,y)与f(x,y)均为可微函数,且φ’y(x,y)≠0.已知点(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
设位于点(0,1)的质点A对于质点M的引力大小为(k>0为常数,r=|AM|).分别求下列运动过程中A对质点M的引力所作的功(如图9.65):(I)质点M沿曲线自B(2,0)运动到O(0,0);(Ⅱ)质点M在圆x2+y2=22上由B点沿逆时针方向运动
函数μ=x2-2yz在点(1,一2,2)处的方向导数最大值为_________.
设F:x=x(t),y=y(t)(α<t<β是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x’2(t)+y’2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈是函数f(x,y)在上的极值点,证明:f(x,y)在点P0沿的切线方
设f(x,y)=2(y-x2)2-x7-y2.(Ⅰ)求f(x,y)的驻点;(Ⅱ)求f(x,y)的全部极值点,并指明是极大值点还是极小值点.
随机试题
【B1】【B3】
AAI起搏器的第2个字母A代表
患者,男,20岁。持续发热10天,伴双膝关节酸痛,3周前有咽痛,体温38.5℃,心率110次/min,血压105/75mmHg,双膝关节红肿,双肘关节附近皮下扪及豌豆大小结节3~4个,可活动,无压痛,诊断为风湿热。应首选
男,25岁。因车祸撞伤腹部。病人诉腹痛难忍,伴恶心、呕吐。X线检查见膈下游离气体,拟诊为胃肠道外伤性穿孔。可减少腹腔毒索吸收的体位是
产品方案需要在()研究基础上形成。
作为天然饰面石材,花岗岩与大理石相比()
选定文本中包含多种字体时,格式工具栏字体框中显示“宋体”。()
一般而言,所有权证券承担的风险比债权证券承担的风险大。()
某饮料生产企业甲为增值税一般纳税人,适用企业所得税税率25%。2019年度实现营业收入80000万元,自行核算的2019年度会计利润为5600万元,2020年5月经聘请的会计师事务所审核后,发现如下事项:(1)2月份收到市政府支持产业发展拨付
学校里种植了品种繁多的月季花,某兴趣小组想让一株月季开出不同色彩的花,应该采用的技术是()。
最新回复
(
0
)