首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-05-10
78
问题
[2003年] 已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0, l
2
:bx+2cy+3a=0, l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
将几何问题转化为代数问题而证之,归结为证三直线的方程所组成的方程组有唯一解的充要条件是a+b+c=0. 证一 必要性.设l
1
,l
2
,l
3
交于一点,则线性方程组[*]有唯一解,则 秩(A)=秩[*]=2. 因而0=[*] =一6(a+b+c)[*]=一6(a+b+c)[一(b一c)
2
一(a一b)(a一c)] =6(a+b+c)[(b—c)
2
+(a一b)(a一c)] =6(a+b+c)(b
2
+c
2
一2bc+a
2
一ab一ac+bc) =3(a+b+c)(2b
2
+2c
2
一2bc+2a
2
一2ab一2ac) =3(a+b+c)[(a
2
+b
2
一2ab)+(a
2
+c
2
一2ac)+(b
2
+c
2
一2bc)] =3(a+b+c)[(a—b)
2
+(a一c)
2
+(6一c)
2
]. 因a,b,c至少有两个不同,故(a一b)
2
+(a一c)
2
+(b-c)
2
≠0,从而必有a+b+c=0. 充分性.当a+b+c=0时,下面证l
1
,l
2
,l
3
交于一点,为此证三条直线方程有仅有一个解,于是归结为证明秩(A)=秩([*])=2. 当a+b+c=0时,由必要性的证明知,∣[*]∣=0,因而秩([*])<3.为证秩(A)=秩([*])=2,只需证A中有一个二阶子式不等于0.因平面直线的方程是二元一次方程,故有a与b不同时为零,否则由ax+2by+3c=0得到c=0.这与方程ax+2by+3c=0为直线方程相矛盾.同理,b与c,c与a也同时不为零,于是有 [*]=2(ac—b
2
)=2a[(一1)(a+b)]一2b
2
=一2[a(a+b)+b
2
] =一2[a
2
+2·(1/2)ab+(b/2)
2
+b
2
一(b/2)
2
] =一2[(a+b/2)
2
+3b
2
/4]≠0. 故秩(A)=2=秩(A),即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/DVV4777K
0
考研数学二
相关试题推荐
计算定积分
设f′(lnχ)=1+χ,且f(0)=1,求f(χ).
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量,则a=_______.
微分方程|x=1满足y=1的特解为__________。
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
设f(u)具有连续的一阶导数,且当x>0,y>0时,,求z的表达式.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
随机试题
在坐标图上,表示收入和消费关系的45°线意味着()
B公司通过租赁方式取得一项公允价值为1950万元的管理用固定资产,租赁期开始日为2011年1月1日,固定资产使用期4年,租赁期2年,租赁期满归还出租方,合同利率6%,每年年末支付租金1000万元,承租方担保余值100万元,另以银行存款支付初始直接费用等10
下列哪种情况下动脉CO2分压降低?
针灸治疗惊悸怔忡的基本处方是针灸治疗水饮内停证之惊悸怔忡的配穴是
设总体X的概率密度为而X1,X2,…,Xn是来自该总体的样本,则未知参数θ的最大似然估计量是()。
国际收支下的经常项目包括()。
所有水平上乘、特色鲜明的大学,无一不是办学主体在公平的市场竞争环境下逐步形成的。当前市场的公平竞争机制还存在着扭曲现象,在办学资源的配置还主要是靠各级政府“有形的手”操控的情况下,高校的办学模式趋同、办学特色缺失就是不可避免的“天然产物”了。解决这个问题的
A.黄色黏稠脓液B.淡黄稀薄脓液C.翠绿色、稍黏稠、有酸臭味的脓液D.灰白或灰褐色、有明显腐败坏死臭味的脓液E.稀薄污浊、暗灰色米汤样、夹杂干酪样坏死物的脓液金黄色葡萄球菌感染形成的脓液为()。
警察甲因为公民吴某举报自己受贿而怀恨在心,遂用他人手机向某军官发了一条短信,捏造吴某与其妻同居的事实,该军官信任自己妻子未予理睬,甲的行为构成()。(2012一专一9)
InBritain,highschoolstudentscanrunabusiness!Eachbusinessrunsforoneyear.Whentheystarttheirbusiness,theyborro
最新回复
(
0
)