首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在平面区域D上数量场u(x,y)=50-x2-4y2,试问在点P0(1,一2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P0(1,一2)处出发沿这条路径u(x,y)升高最快.
设在平面区域D上数量场u(x,y)=50-x2-4y2,试问在点P0(1,一2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P0(1,一2)处出发沿这条路径u(x,y)升高最快.
admin
2018-09-25
89
问题
设在平面区域D上数量场u(x,y)=50-x
2
-4y
2
,试问在点P
0
(1,一2)∈D处沿什么方向时u(x,y)升高最快,并求一条路径,使从点P
0
(1,一2)处出发沿这条路径u(x,y)升高最快.
选项
答案
因为方向导数沿其梯度方向取得最大值,则考虑grad u|
(1,-2)
=[*]=(-2xi-8yj)|
(1,-2)
=-2i+16j,故u(x,y)在点P
0
(1,-2)处沿grad u|
(1,-2)
=-2i+16j方向升高最快. 设所求的路径为y=y(x),其上任一点P(x,y)处的切向量τ=(dx)i+(dy)j,由题意知,它应与它的梯度方向gradu=-2xi-8yj一致,则有 [*] 求解此微分方程初值问题可知,沿着y=-2x
4
出发时u(x,y)升高最快.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dig4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
求柱面x2+y2=ax含于球面x2+y2+z2=2内的曲面面积S.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
已知矩阵A=有两个线性无关的特征向量,则a=__________.
求解二阶微分方程的初值问题
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1.
设S为球面x2+y2+z2=R2(R>0)的上半球的上侧,则下列表示式正确的是().
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。(Ⅰ)求关系式中的矩阵A;(Ⅱ)设目前农村人口与城镇
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
随机试题
具有四级结构的蛋白质特征是
血浆中起关键作用的缓冲对是
疾病监测采用的方法属于
关于一般抹灰施工及基层处理的说法,错误的是()。
我国雨凇最多的地方是()。
材料:刘某是一名初中二年级的学生,他特别喜欢罗纳尔多,于是把头发剃成足球式的形状。第二天来学校上课,刚走进教室,被老师看见,老师便对他说:“你的发式太怪了,把头发再剪剪,恢复正常了再来上课,顺便让你爸爸妈妈来学校一趟。”刘某回家后,将这件事告知家人,第二
一个人应该活得是自己并且干净顾城人的生命里有一种能量,它使你不安宁。说它是欲望也行,幻想也行,妄想也行,总之它不可能停下来,它需要一
A、 B、 C、 D、 A图形中的外层四边形顺时针旋转45。、中间四边形顺时针旋转90。、内部四边形逆时针旋转45。,得到后一个图形。由此应选择A。
根据下述材料。写一篇700字左右的论说文,题目自拟。中心是令人向往的地方,处于中心地带往往有诸多便利、机会和认同。当然也有人在中心地带迷失,最终边缘化。边缘是让人平静的地方,它的质朴和别样让生活其中的人受益良多,甚至还吸引中心的人们探寻它的魅力。
Weliveinatimewhen,morethaneverbeforeinhistory,peoplearemovingabout.
最新回复
(
0
)