首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
A为m×n矩阵,秩为m;B为n×(n-m)矩阵,秩为n-m;又知AB=0,α是满足条件Aα=0的一个n维列向量,证明:存在唯一个n一m维列向量β使得α=Bβ.
A为m×n矩阵,秩为m;B为n×(n-m)矩阵,秩为n-m;又知AB=0,α是满足条件Aα=0的一个n维列向量,证明:存在唯一个n一m维列向量β使得α=Bβ.
admin
2016-07-11
74
问题
A为m×n矩阵,秩为m;B为n×(n-m)矩阵,秩为n-m;又知AB=0,α是满足条件Aα=0的一个n维列向量,证明:存在唯一个n一m维列向量β使得α=Bβ.
选项
答案
证明:B为n×(n—m)矩阵,且秩为n—m,故方程Bx=0只有零解,先假设Bx=a有解,假设Bx=α有两个不同解β
1
,β
2
,则有 Bβ
1
=α,Bβ
2
=α,故B(β
1
一β
2
)=0得β
1
=β
2
.故Bx=α在有解的情形只有唯一解. 下证Bx=α有解:由AB=0,A的秩为m,可知Ax=0的基础解系含n一m个解向量,而B的秩为n—m,这表示B的n—m个列向量即构成Ax=0的基础解系,设B的这n一m个列向量分别为α
1
,α
2
,…,α
n-m
,又Aα=0故可将α表示成α=k
1
α
1
+…+k
n-m
α
n-m
,令β=(k
1
,k
2
,…,k
n-m
)
T
. 即Bβ=(α
1
,α
2
…,α
n-m
)[*]=(k
1
α
1
+k
2
α
2
+…+k
n-m
α
n-m
)=α. 所以Bβ=α有解,即存在唯一的β使得Bβ=α,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/DlyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Inaquiet,darkenedlectureroom,youbeginafrustratingfightagainstfatigue.Theoverheadprojectorhums,andyoucannotconce
特征,特色n.f______
庄子用这段话来说明什么道理?这里运用了哪几种论证方法?
阅读下面段落,按要求回答问越。十九年,似乎一切全变了,又似乎都没有改变。死了许多人,毁了许多家。许多可爱的生命葬入黄土。接着又有许多新的人继续扮演不必要的悲剧。浪费,浪费,还是那许多不必要的浪费——生命,精力,感情,财富,甚至欢笑和眼泪。我去的时
问β=(4,5,5)能否表示成α1=(1,2,3),α2=(一1,1,4),α3=(3,3,2)的线性组合?
判断矩阵是否可逆,若可逆,求出它的逆矩阵.
已知A为3阶矩阵,ξ1,ξ2为齐次线性方程组Ax=0的基础解系,则|A|=_______.
设方阵A满足条件A’A=E,求证:A的实特征向量所对应的特征值的绝对值等于1.
行列式中(3,2)元素的代数余子式A32=_______.
设n阶方阵A满足A2一A-2En=0,则A-1=_______,(A-En)-1=________,(A+2En)-1=_______.
随机试题
检疫人员进行生猪宰后检疫时,肉眼发现某屠宰猪肉膈肌中有针尖大小的白色小点。低倍镜检查见梭形包囊,囊内有卷曲的虫体。该虫体最可能是()
下列是软膏水溶性基质的是
《检测和校准实验室能力的通用要求》(ISO/IEC17025:2017)适用于所有从事实验室活动的组织,不论其人员数量多少。()
国家实施西部大开发战略的长远目标包括()。
某消防技术服务机构对某建筑设置防烟排烟系统安装质量进行了检查,下列结果中,符合现行国家标准《建筑防烟排烟系统技术标准》的有()。
租船合同中的条件条款是指对实现合同的商业目的有着密切关系的条款。()
装箱单是用以说明货物包装细节的清单,又称为()。
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
試験に合格するには、がんばる________。
PeoplewhospendalotoftimesurfingtheInternetaremorelikelytoshowsignsofdepression,BritishscientistssaidonWedn
最新回复
(
0
)